
Comput Syst Sci & Eng (2007) 6: 26–40
© 2007 CRL Publishing Ltd

International Journal of

Computer Systems
Science & Engineering

n-Gram/2L-approximation: a
two-level n-gram inverted index
structure for approximate string
matching

Min-Soo Kim, Kyu-Young Whang and Jae-Gil Lee

Department of Computer Science and Advanced InformationTechnology Research Center (AITrc) Korea Advanced Institute of Science andTechnology (KAIST)
373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea
e-mail: {mskim, kywhang, jglee}@mozart.kaist.ac.kr, fax: +82-42-867-3562

Approximate string matching is to find all the occurrences of a query string in a text database allowing a specified number of errors. Approximate string
matching based on the n-gram inverted index (simply, n-gram Matching) has been widely used. A major reason is that it is scalable for large databases since
it is not a main memory algorithm. Nevertheless, n-gram Matching also has drawbacks: the query performance tends to be bad, and many false positives
occur if a large number of errors are allowed. In this paper, we propose an inverted index structure, which we call the n-gram/2L-Approximation index, that
improves these drawbacks and an approximate string matching algorithm based on it. The n-gram/2L-Approximation is an adaptation of the n-gram/2L
index [4], which the authors have proposed earlier for exact matching. Inheriting the advantages of the n-gram/2L index, the n-gram/2L-Approximation index
reduces the size of the index and improves the query performance compared with the n-gram inverted index. In addition, the n-gram/2L-Approximation
index reduces false positives compared with the n-gram inverted index if a large number of errors are allowed. We perform extensive experiments using
the text and protein databases. Experimental results using databases of 1 GBytes show that the n-gram/2L-Approximation index reduces the index size by
up to 1.8 times and, at the same time, improves the query performance by up to 4.2 times compared with those of the n-gram inverted index.

Keywords: Approximate String Matching, n-Gram, Inverted Index

1. INTRODUCTION

Approximate string matching is to find all the occurrences of
a query string in a text database allowing a specified number
of errors [8]. It has a number of applications such as those for
searching text documents with typo’s errors and for finding DNA
or protein sequences with possible mutations. DNA or protein
sequences can be regarded as a long text over specific alpha-
bets (e.g., {A,C,G,T} in DNA) [6].

The algorithms for approximate string matching are classi-
fied into two categories depending on whether they use indexes:

indexing algorithms and online algorithms. The former uses
indexes, while the latter does not. There have been a number
of efforts on online algorithms, but relatively few on indexing
algorithms. Since online algorithms typically use a sequential
scan over the entire database, they are not easily scalable for
large databases. Thus, it has been pointed out that developing
indexing algorithms is very important [6]. Indexing algorithms
are classified depending on the types of the index structures they
use. The indexes used include the suffix tree, suffix array, q-
sample index, and n-gram inverted index (simply, the n-gram
index) [8].

26 vol 22 no 6 November 2007



MIN-SOO KIM ET AL

Indexing algorithms based on the n-gram index (simply, n-
gram Matching) has been widely used for approximate string
matching due to the following advantage: the n-gram index is
easily scalable for large databases because it is not a main mem-
ory algorithm, and thus, is not limited by the size of main mem-
ory [1, 3, 8]. n-gram Matching retrieves candidate results by
finding documents that contain n-grams extracted from a query
string, and then, performs refinement by using an online algo-
rithm [7]. Despite these advantages, n-gram Matching also has
the following drawbacks. First, the query performance tends to
be bad because of large index size [7, 8, 14]. Second, many false
positives occur if a large number of errors are allowed [7, 8]. In
an extreme case, n-gram Matching is not capable of reducing the
candidates despite of using an index.

In order to solve the these drawbacks, we adapt the n-gram/2L
index [4], which the authors have earlier proposed for exact
matching, to approximate string matching. The n-gram/2L index
reduces the size of the index and improves the query performance
compared with the n-gram index by eliminating the redundant
information that exists in the n-gram index. In this paper, we pro-
pose the n-gram/2L-Approximation index, which is an adaptation
of the n-gram/2L index. We then propose an approximate string
matching algorithm based on it. The n-gram/2L-Approximation
index is constructed in two levels just in the same way as the
n-gram/2L index is: the back-end index and the front-end index.

The n-gram/2L-Approximation index inherits the following
excellent properties of the n-gram/2L index. First, the n-
gram/2L-Approximation index improves the query performance
compared with n-gram Matching, and such improvement be-
comes more marked in a larger database or for a longer query
string. Second, the n-gram/2L-Approximation index reduces
the size compared with the n-gram index, and such reduction
becomes more marked in a larger database. We investigate the
reasons for these desirable properties in Section 5.

The rest of this paper is organized as follows. Section 2 ex-
plains approximate string matching. Section 3 presents n-gram
Matching. Section 4 proposes the structure and algorithm of the
n-gram/2L-Approximation index. Section 5 presents the formal
model of the n-gram/2L-Approximation index and analyzes the
size of the index and the query performance. Section 6 presents
the results of performance evaluation. Section 7 summarizes and
concludes the paper.

Table 1 Summary of notation.

Symbols Definitions

N the number of documents
Di the i-th document (1 ≤ i ≤ N )
di the identifier of the i-th document (1 ≤ i ≤ N )

Di[p : q] the substring of Di , consisting of characters from
the p-th one
through the q-th one (p ≤ q)

Q the query string
Len(s) the length of the string s

k the error tolerance (user-specified maximum ac-
ceptable edit distance)

α the error ratio ( = k
Len(Q)

)

2. PROBLEM DEFINITION

In this paper, we deal with approximate string matching. Ap-
proximate string matching is to find the set of pairs of the doc-
ument and offset where a query string matches within a given
error tolerance [6]. A number of distance measures have been
proposed for measuring errors between two strings, and the edit
distance [6] is the most widely used one. We also use the edit
distance as the distance measure.

The edit distance between two strings x and y is defined as the
minimal number of edit operations needed to convert x into y (or
y into x). Here, an edit operation means insertion, deletion, or
substitution of a character. edit (x, y) denotes the edit distance
between x and y, and x matches y within k errors if and only if
edit (x, y) ≤ k.

We first summarize in Table 1 the notation to be used through-
out the paper. In Table 1, the error ratio α means the ratio of the
error tolerance to the length of query string, i.e., k

Len(Q)
.

Now, we formally define approximate string matching in Def-
inition 1 by using the notations in Table 1.

Definition 1 Suppose that a query string Q, an error tolerance k,
and a set of documents {D1, D2, ..., DN } are given. Approximate
string matching is to find the set {(di, p)} of pairs of the identifier
di of Di and offset p that satisfy edit (Q, Di[p : q]) ≤ k for
some offset q.

3. RELATED WORK

In this section, we explain n-gram Matching. Then, we dis-
cuss its advantages and disadvantages. n-gram Matching is per-
formed in the following two steps [8]: (1) finding candidate doc-
uments that satisfy a necessary condition by searching the n-gram
index with n-grams extracted from a query string; (2) doing re-
finement in order to find final results by using online algorithms.
The necessary condition used in the first step is proposed by
Navarro et al. [8] and Gravano et al. [3] as in Lemma 1.

Lemma 1 [The necessary condition for n-gram Match-
ing] [3, 8]: Suppose that a query string Q, a document D, and
an error tolerance k satisfy edit (Q, D[p : q]) ≤ k for some
offsets p and q. The query string Q is divided into disjoint
n-grams {Gi}(1 ≤ i ≤ �Len(Q)

n
�). Then, the following two con-

ditions are satisfied: (1) among the set of n-grams {Gi}, at least
(�Len(Q)

n
� − k) n-grams {gj }(1 ≤ j ≤ �Len(Q)

n
� − k) appear in

the document D; (2) for any n-gram gj , the offset oqj of gj within
Q and the offset odj of gj within D satisfy |(odj −p)−oqj | ≤ k.

Proof: We prove the Lemma for each condition.

Condition (1): edit (Q, D[p : q]) ≤ k means that at most k

edit operations are required to convert Q into D[p : q].
Each edit operation is able to modify at most one of the
�Len(Q)

n
� n-grams. Thus, among disjoint �Len(Q)

n
� n-grams

{Gi}, at least (�Len(Q)
n

� − k) n-grams {gj } must remain
unchanged in D[p : q]. Those n-grams also must appear in
the document D, which contains D[p : q] as a substring.

Condition (2): k edit operations change the offset of gj by at
most k. Thus, the offset oqj of gj within Q and the offset

vol 22 no 6 November 2007 27



N-GRAM/2L-APPROXIMATION: A TWO-LEVEL N-GRAM INVERTED INDEX STRUCTURE FOR APPROXIMATE STRING MATCHING

opj of gj within D[p : q] satisfy |opj − oqj | ≤ k. Since
opj = (odj − p), we have |(odj − p) − oqj | ≤ k.

n-gram Matching has the advantage of being scalable since it
is not bounded by the size of available main memory. In contrast,
the suffix tree and suffix array are not easily scalable for large
databases because the index should reside in main memory and
is limited by its size [1, 8]. Despite this advantage, the query per-
formance of n-gram Matching tends to be bad [7, 8, 14] mainly
for the following reasons. First, finding candidate documents is
time-consuming because of the large size of the n-gram index.
The large size of the index makes n-gram Matching read in many
postings from the index during query processing. This large size
is caused by the method of extracting terms: the n-gram index
extracts n-grams at each character offset in a document, so that a
very large number of n-grams are extracted from the document.
Second, if a large error tolerance is given, the refinement process
is also time-consuming because of a larger number of candidate
documents. The number of candidate documents gets larger as
the error tolerance k does since a larger k makes n-gram Match-
ing retrieve documents containing fewer n-grams as candidates
according to Lemma 1. Furthermore, n-gram Matching can not
have the benefit of using the index if the error ratio exceeds a
certain threshold [7]. If α ≥ 1

n
(i.e., k ≥ �Len(Q)

n
�), n-gram

Matching finds documents containing zero or more n-grams by
Lemma 1, that is, it selects all documents as candidates. We
define the maximum error ratio as 1

n
. It has been pointed out

as a drawback that n-gram Matching has a low maximum error
ratio compared with other indexing algorithms [8].

One can argue that we could decrease the time for performing
refinement (simply, refinement time) and increase the maximum
error ratio by reducing the length n of n-grams [3, 8, 10]. When
we use a smaller value of n, since n-gram Matching checks the
necessary condition of Lemma 1 with more n-grams, the num-
ber of candidate documents is reduced, and, at the same time,
the refinement time is reduced. A smaller n also increases the
maximum error ratio 1

n
. Nevertheless, a smaller n drastically

increases the time for finding candidates (simply, filtration time)
since both the length and the number of posting lists accessed
during query processing are increased. Thus, we can not easily
improve the performance by decreasing n, and the problem of a
low maximum error ratio of n-gram Matching can not be easily
solved.

4. N-GRAM/2L-APPROXIMATION INDEX

4.1 Index Structure

Figure 1 shows the structure of the n-gram/2L-Approximation
index. Just like the n-gram/2L index [4], this index consists of
the back-end index and the front-end index. The back-end index
uses an m-subsequence as a term and stores the offsets of the
m-subsequence within documents in the posting list of the m-
subsequence. The m-subsequence is defined as the subsequence
of length m. The front-end index uses an n-gram as a term and
stores the offsets of the n-gram within m-subsequences in the
posting list of the n-gram. We note that n denotes the length of
the n-gram, and m the length of the m-subsequence.

4.2 Index Building Algorithm

The n-gram/2L-Approximation index is built through the fol-
lowing four steps: (1) extracting m-subsequences, (2) build-
ing the back-end index, (3) extracting n-grams, and (4) building
the front-end index. Figure 2 shows the algorithm for building
the n-gram/2L-Approximation index. We call this algorithm n-
gram/2L-Approximation Index Building. In Step 1, the algorithm
extracts m-subsequences from a set of documents. The build-
ing algorithm of the n-gram/2L index extracts m-subsequences
such that they overlap with each other by n − 1 [4]. In con-
trast, this algorithms extracts m-subsequences such that they
are disjoint and do not overlap with each other. This intends
to improve the query performance by reducing the number of
m-subsequences accessed in the back-end index. We explain
the method of extracting m-subsequences in more detail in Sec-
tion 4.4. In Step 2, the algorithm builds the back-end index
using the m-subsequences obtained in Step 1. In Step 3, the
algorithm extracts n-grams from the set of m-subsequences ob-
tained in Step 1. Here, the algorithm extracts n-grams by sliding
a window of length n by one character in the m-subsequence
and recording a sequence of characters in the window at each
time. We call it the 1-sliding technique. In Step 4, the algo-
rithm builds the front-end index using the n-grams obtained in
Step 3.

Example 1 Figure 3 shows an example of building the n-
gram/2L-Approximation index. Suppose that n = 2 and m = 4.
Figure 3(a) shows the set of documents. Figure 3(b) shows
the set of the 4-subsequences extracted from the documents.
Since 4-subsequences are extracted such that they are disjoint,
those extracted from the document 0 are “ABCC”, “CDAB”,
and “DABC”. Figure 3(c) shows the back-end index built from
these 4-subsequences. Since the 4-subsequence “ABCC” occurs
at the offsets 0, 8, and 0 in the documents 0, 2, and 3, respec-
tively, the postings < 0, [0] >, < 2, [8] >, and < 3, [0] >

are appended to the posting list of the 4-subsequence “ABCC”.
Figure 3(d) shows the set of the 4-subsequences and their identi-
fiers. Figure 3(e) shows the set of the 2-grams extracted from the
4-subsequences in Figure 3(d). Since 2-grams are extracted by
the 1-sliding technique, those extracted from the 4-subsequence
0 are “AB”, “BC”, and “CC”. Figure 3(f) shows the front-end
index built from these 2-grams. Since the 2-gram “AB” occurs
at the offsets 0, 2, and 1 in the 4-subsequences 0, 2, and 3, re-
spectively, the postings < 0, [0] >, < 2, [2] >, and < 3, [1] >

are appended to the posting list of the 2-gram “AB”.

A small value of n in n-gram index decreases the refinement
time and improve the maximum error ratio, but it significantly
increases the filtration time as explained in Section 3. In con-
trast, the increment of the filtration time is not significant in the
n-gram/2L-Approximation index since the size of the front-end
index is very small compared with that of the n-gram index.
Thus, we can use a smaller n than that of the n-gram index in
order to decrease the refinement time and improve the maxi-
mum error ratio. This is one of the major advantages of the
n-gram/2L-Approximation index compared with the n-gram in-
dex.

28 computer systems science & engineering



MIN-SOO KIM ET AL

(a) The front-end index. (b) The back-end index.

…

B+-Tree on
n-grams

…

B+-Tree on 
m-subsequences

a posting: v, [o1, …, of(v,t)]
a posting: d, [o1, …, of(d,s)]

posting lists 
of n-grams

posting lists of 
m-subsequences

frequency of occurrence 
of n-gram t in m-subsequence vf(v,t):

offset where n-gram t
occurs in m-subsequence voi:

m-subsequence identifierv:

frequency of occurrence 
of n-gram t in m-subsequence vf(v,t):

offset where n-gram t
occurs in m-subsequence voi:

m-subsequence identifierv:

frequency of occurrence 
of m-subsequence s in document df(d,s):

offset where m-subsequence s
occurs in document doi:

document identifierd:

frequency of occurrence 
of m-subsequence s in document df(d,s):

offset where m-subsequence s
occurs in document doi:

document identifierd:

Figure 1 The structure of the n-gram/2L-Approximation index.

Algorithm n-Gram/2L-Approximation Index Building:

Input: (1) The document collection  D,  (2) The length  m of m-subsequences , (3) The length  n of n-grams

Output: The n-gram/2L-Approximation index

Algorithm:

Step 1.  Extraction of m-subsequences: for each document in D

1.1  Suppose that a document d is a sequence of characters c0,c1,...,cN-1 ;

extract m-subsequences starting from the character ci*m (0 ≤ i < N / m) and

record the offsets of the m-subsequences within d.        

1.2  If the length of the last m-subsequence is less than m,

pad blank characters to the m-subsequence.

Step 2.  Construction of the back-end inverted index: for each m-subsequence obtained in Step 1

2.1  Suppose that an m-subsequence s occurs in a document d at offsets o0,o1,...,of ;

append a posting <d, [o0,o1,...,of ]> to the posting list of s.

Step 3.  Extraction of n-grams: for each m-subsequence obtained in Step 1

3.1 Suppose that an m-subsequence s is a sequence of characters c0,c1,...,cL-1 ; 

extract n-grams starting at the character ci (0 ≤ i < L-n+1) and

record the offsets of the n-grams within s.        

Step 4.  Construction of the front-end inverted index: for each n-gram obtained in Step 3

4.1  Suppose that an n-gram g occurs in an m-subsequence v at offsets o0,o1,...,of ; 

append a posting <v, [o0,o1,...,of ]> to the posting list of g.

Figure 2 The algorithm of building the n-gram/2L-Approximation index.

4.3 Query Processing Algorithm

4.3.1 Overview

The query processing of the n-gram/2L-Approximation index
is performed in two steps: (1) searching the front-end in-
dex, (2) searching the back-end index. Figure 4 shows an
overview of the query processing algorithm that uses the n-

gram/2L-Approximation index. In the first step, we find the
m-subsequences that approximately match with a query string
by searching the front-end index with the n-grams extracted from
the query string. In the second step, we find the documents that
approximately match with the query string by searching the back-
end index with the m-subsequences retrieved in the first step. In
each step, we obtain the candidate results by performing filtra-
tion, and then, find the final results by performing refinement.

vol 22 no 6 November 2007 29



N-GRAM/2L-APPROXIMATION: A TWO-LEVEL N-GRAM INVERTED INDEX STRUCTURE FOR APPROXIMATE STRING MATCHING

4-subsequence 
disjoint window

A B C C C D A B D A B C

D A B C C D A B C C D A

C D A B D A B C A B C C 

A B C C D A B C C C D A

ABCC
CCDA
CDAB
DABC

0, [0]

0, [4]
0, [8]

1, [8]
2, [8] 3, [0]
3, [8]
1, [4]
1, [0] 2, [4]

A B C C

C C D A

C D A B

D A B C

document 0

document 1

document 2

document 3

0, [0] 2, [2] 3, [1]
3, [2]

0, [2] 1, [0]
1, [1] 2, [0]

0, [1]
AB
BC
CC
CD

A B C Csubsequence 0

subsequence 1

subsequence 2

subsequence 3

C C D A

C D A B

D A B C

A B

B C

C C

C D

2, [0]
3, [4]

D A
1, [2] 2, [1] 3, [0]DA

(c) The back-end index.(a) The document collection.
(b) The set of 

4-subsequences.

(f) The front-end index.(d) The set of 4-subsequences. (e) The set of 2-grams.

4-subsequences
posting lists of

4-subsequences

2-grams posting lists of 2-grams

Figure 3 An example of building the n-gram/2L-Approximation index.

Filtering using the
front-end index

Refinement

candidate m-subsequences

Filtering using the
back-end index

Refinement

candidate documents

Query

documents 
approximately matching 

with query string
(Query result)

Step 1. Step 2.

m-subsequences 

approximately matching 

with query string

Figure 4 An overview of the query processing algorithm that uses the n-gram/2L-Approximation index.

4.3.2 The Conditions for Filtration

The filtration operations in Steps 1 and 2 are performed by
checking whether m-subsequences or documents satisfy nec-
essary conditions. We are able to reduce the number of candi-
dates by filtering out m-subsequences or documents that do not
satisfy the necessary conditions. Since we filter out only the
m-subsequences or documents that do not satisfy the necessary
conditions, no false drop occurs. Hereafter, we call the filtra-
tion operation in Step 1 as the front-end filtration and that in
Step 2 as the back-end filtration. In this section, we explain the
necessary conditions for the front-end filtration and back-end
filtration.

We first define ε-match in Definition 2. When ε = 0 in Defi-
nition 2, x exactly matches with y[p : q]. This is a special case
of ε-match and is denoted as 0-match.

Definition 2 A string x ε-matches with a string y if two strings
x and y satisfy edit (x, y[p : q]) ≤ k at some offsets p and q.
Here, ε-offset denotes the offset p, and ε-substring(y) denotes
the substring y[p : q].

We now explain the necessary condition for the front-end fil-
tration in Theorem 1 and that for the back-end filtration in Theo-
rem 2. Theorems 1 and 2 are adapted from Lemma 1. Theorem 1
is different from Lemma 1 in that it assumes n-grams extracted by
using the 1-sliding technique instead of disjoint n-grams. Theo-
rem 2 is different from Lemma 1 in that it handles not only exact
matching but also approximate matching with the query string.

Theorem 1 [The necessary condition for the front-end fil-
tration]: Suppose that an m-subsequence S ε-matches with a
query string Q at an ε-offset p, and a set of n-grams {Gi}(1 ≤

30 computer systems science & engineering



MIN-SOO KIM ET AL

i ≤ m − n + 1) are extracted from the m-subsequence S by
using the 1-sliding technique. Then, the following two condi-
tions are satisfied: (1) among the set of n-grams {Gi}, at least
r = (m − n + 1) − (ε × n) n-grams {gj }(1 ≤ j ≤ r) 0-
matches with the query string Q; (2) for any n-gram gj , the
offset osj of gj within S and the 0-offset oqj of gj within Q

satisfy |(oqj − p) − osj | ≤ ε.

Proof: See Appendix A.

Theorem 2 [The necessary condition for the back-end filtra-
tion]: Suppose that a query string Q ε-matches with a document
D at an ε-offset p, and ε-substring(D) is divided into disjoint
t = �Len(Q)+1

m
� − 1 m-subsequences {Si} (1 ≤ i ≤ t). Then,

the following two conditions are satisfied: (1) among the set of
m-subsequences {Si}, at least r = t − � ε

� ε
t
�+1� m-subsequence

{sj }(1 ≤ j ≤ r) � ε
t
�-matches with the query string Q; (2) for

any m-subsequence sj , the offset odj of sj within D and the
� ε

t
�-offset oqj of sj within Q satisfy |(odj − p) − oqj | ≤ ε.

Proof: See Appendix B.

4.3.3 Algorithm

Figure 5 shows the algorithm of approximate string matching
that uses the n-gram/2L-Approximation index. We call this al-
gorithm n-gram/2L-Approximation Matching. When a query
string Q, a error tolerance k, and a set of documents {Di} are
given as input parameters, the algorithm outputs the set of doc-
uments that k-matches with the query string Q. By Theorem 2,
we need to find m-subsequences that � k

t
�-matches with Q in

order to find documents that k-matches with Q. Thus, the al-
gorithm first finds m-subsequences that � k

t
�-matches with Q by

substituting ε with � k
t
� in Theorem 1. We now explain each step

of the algorithm in more detail.

Step 1: The algorithm extracts n-grams from the query string
Q by the 1-sliding technique and searches the posting lists
of those n-grams in the front-end index. Then, the algo-
rithm performs merge outer join among those posting lists
using the m-subsequence identifier as the join attribute and
finds the set {Si} of candidate m-subsequences that satisfy
the necessary condition in Theorem 1. Since an candidate
m-subsequence Si typically does not have all the n-grams
extracted from Q, the algorithm performs merge outer join
in Step 1.2. Next, the algorithm checks whether Si indeed
� k

t
�-matches with Q by performing refinement. If Si � k

t
�-

matches with Q, it adds the identifier si of Si into the set
Smatch.

Step 2: The algorithm performs merge outer join among the
posting lists of the m-subsequences in Smatch using the doc-
ument identifier as the join attribute and obtains the set {Di}
of candidate documents that satisfy the necessary condition
in Theorem 2. Since a candidate document Di typically
does not have all the m-subsequences in Smatch, the algo-
rithm performs merge outer join in Step 2.1. Next, the
algorithm checks whether Q indeed k-matches with Di by
performing refinement. If Q k-matches with Di , it returns
the pair of the identifier di of Di and k-offset p, i.e., (di, p)

as the query result.

4.4 The Method of Extracting
m-Subsequences

The method of extracting m-subsequences in the n-gram/2L-
Approximation index is different from that in the n-gram/2L
index. In the n-gram/2L-Approximation index, we extract m-
subsequences such that they are disjoint as mentioned in Section
4.2. This difference intends to decrease the overhead of search-
ing the back-end index by reducing the size of Smatch to be
searched in the back-end index.

Suppose that m-subsequences are extracted such that they
overlap with each other by n − 1 in Theorem 2. Then,
t ′ = �Len(D)−n+2

m−n+1 − 1� m-subsequences are extracted from ε-
substring(D). One edit operation is able to give at most two er-
rors to the t ′ m-subsequences by applying it to the part where two
m-subsequences overlap with each other. Thus, k edit operations
is able to give at most 2k errors to the t ′ m-subsequences. No mat-
ter how we apply 2k edit operations to t ′ m-subsequences, at least
one m-subsequence with at most � 2k

t ′ � errors appears in a query
string Q. That is, at least one m-subsequence � 2k

t ′ �-matches with
Q. Therefore, under this assumption, Theorem 2 is modified so
as to search for m-subsequences � 2k

t ′ �-matching with Q.
Since � 2k

t ′ � > � k
t
� for typical values of n and m (for example,

n=2, m=4 or 5), the number of m-subsequences � 2k
t ′ �-matching

with Q becomes larger than that of m-subsequences � k
t
�-

matching with Q. We note that the number of m-subsequences
� 2k

t ′ �-matching (or � k
t
�-matching) with Q is the size of Smatch.

Thus, it is preferable to extract m-subsequences such that they
are disjoint since a smaller size of Smatch can improve the query
performance.

5. FORMAL ANALYSIS OF THE
N-GRAM/2L-APPROXIMATION INDEX

In this section, we present a formal analysis of the n-gram/2L-
Approximation index. In Section 5.1, we formally prove that
the n-gram/2L-Approximation index is derived by eliminating
the redundancy in the position information that exists in the n-
gram index. In Section 5.2, we analyze the space complexity of
the n-gram/2L-Approximation index. In Section 5.3, we analyze
the time complexity of the n-gram/2L-Approximation index.

5.1 Formalization

Kim et al. [4] have observed that the redundancy of the posi-
tion information existing in the n-gram index is caused by a
non-trivial multivalued dependency (MVD) [2, 11] and shown
that the n-gram/2L index can be derived by eliminating that re-
dundancy through relational decomposition to the Fourth Nor-
mal Form (4NF). In this section, we show that the n-gram/2L-
Approximation index can be derived in the same way as the
n-gram/2L index is.

For the sake of theoretical development, Kim et al. have first
considered the relation that is converted from the n-gram index
so as to obey the First Normal Form (1NF). This relation is called
the NDO relation. It has three attributes N, D, and O. Here, N in-
dicates n-grams, D document identifiers, and O offsets. Further,

vol 22 no 6 November 2007 31



N-GRAM/2L-APPROXIMATION: A TWO-LEVEL N-GRAM INVERTED INDEX STRUCTURE FOR APPROXIMATE STRING MATCHING

Algorithm n-Gram/2L-Approximation Matching:

Input: (1) The n-gram/2L-Approximation index

(2) A query string Q

(3) A error tolerance k

(4) A document collection {Di}

Output: the set {(di, p)} of pairs of the identifier di of Di and offset p that k-matches with Q

Algorithm:

Step 1.  Searching the front-end inverted index: let t = (Len(Q)+1)/m −1

1.1  Extract n-grams from Q by the 1-sliding technique and search the posting lists of those n-grams.

1.2  Perform merge outer join among those posting lists using the m-subsequence identifier as the join attribute;

find a candidate m-subsequence Si that satisfies the necessary condition in Theorem 1.

1.2.1 Perform refinement on Si ; 

If Si k/t-matches with Q, add the identifier si of Si into the set Smatch.

Step 2.  Searching the back-end inverted index:

2.1 Search the posting lists of m-subsequences in Smatch.

2.2  Perform merge outer join among those posting lists using the document identifier as the join attribute;

find a candidate document Di that satisfies a necessary condition in Theorem 2.

2.2.1  Perform refinement on Di ; 

If Q k-matches with Di, return the pair (di, p) of the identifier di of Di and k-offset p.

Figure 5 The n-gram/2L-Approximation Matching algorithm.

Kim et al. have considered the relation obtained by adding the at-
tribute S and by splitting the attribute O into two attributes O1 and
O2. This relation is called the SNDO1O2 relation. It has five at-
tributes S, N, D, O1, and O2. Here, S indicates m-subsequences,
O1 the offsets of n-grams within m-subsequences, and O2 the
offsets of m-subsequences within documents. The values of the
attributes S, O1, and O2 appended to the relation SNDO1O2
are automatically determined by those of the attributes N, D,
and O in the relation NDO. In the tuple (s, n, d, o1, o2) deter-
mined by a tuple (n, d, o) of the relation NDO, s represents the
m-subsequence that the n-gram n occurring at the offset o in
the document d belongs to. o1 is the offset where the n-gram
n occurs in the m-subsequence s, and o2 the offset where the
m-subsequence s occurs in the document d .

Kim et al. have proven that non-trivial MVDs hold in the
relation SNDO1O2 (i.e., the n-gram index) in Theorem 3, and
the n-gram/2L index is derived from the relation SNDO1O2 in
Theorem 4.

Theorem 3 [4] The non-trivial MVDs S →→ NO1 and S →→
DO2 hold in the relation SNDO1O2. Here, S is not a superkey.

Theorem 4 [4] The 4NF decomposition (SNO1, SDO2) of the
relation SNDO1O2 is identical to the front-end and back-end
indexes of the n-gram/2L index.

In this paper, we also use the NDO relation and the SNDO1O2
relation for the sake of theoretical development. We note that
some n-grams can not be extracted from a document due to our
method of extracting m-subsequences. We define those n-grams
in Definition 3.

Definition 3 Suppose that m-subsequences are extracted such
that they are disjoint and do not overlap with each other. The
missing n-grams are those that are not extracted since they are
located across two consecutive m-subsequences as in Figure 6.

m-subsequences

n-grams

document

missing n-grams

Figure 6 An example of missing n-grams.

Suppose that a missing n-gram n occurs at an offset o in a
document d. We call the corresponding tuple (n, d, o) in the
NDO relation the missing tuple. We call the relation where all
the missing tuples are eliminated from the NDO relation as the
reduced NDO relation. Further, we consider the relation ob-
tained by adding the attribute S to the reduced NDO relation and
by splitting the attribute O into two attributes O1 and O2. We
call this relation the reduced SNDO1O2 relation.

Now, we prove that non-trivial MVDs hold in the reduced
SNDO1O2 relation (i.e., the n-gram index where all the missing
n-grams are eliminated) in Theorem 5.

Theorem 5 The non-trivial MVDs S →→ NO1 and S →→
DO2 hold in the reduced SNDO1O2 relation. Here, S is not a
superkey.

32 computer systems science & engineering



MIN-SOO KIM ET AL

Proof: We omit a formal proof since the steps in the proof are
similar to those of Lemma 2 by Kim et al. [4].

Intuitively, non-trivial MVDs hold in the SNDO1O2 rela-
tion because the set of documents, where an m-subsequence
occurs, and the set of n-grams, which are extracted from that m-
subsequence, are independent of each other. This independency
hold not only in the n-gram/2L index but also in the n-gram/2L-
Approximation index. Thus, the proof for the n-gram/2L index
can be directly applied to that for the n-gram/2L-Approximation
index.

Example 2 Figure 7 shows an example showing the existence
of the non-trivial MVDs S →→ NO1 and S →→ DO2 in the
reduced SNDO1O2 relation. Suppose that we build the 2-gram
index on the documents in Figure 3(a). Figure 7(a) shows the
NDO relation converted from that index. Here, the shaded tu-
ples of the NDO relation indicate missing tuples. Suppose that
we convert the NDO relation into the reduced NDO relation by
eliminating all the missing tuples. Figure 7(b) shows the reduced
SNDO1O2 relation (m = 4) derived from that relation. Here,
the tuples of the reduced SNDO1O2 relation are sorted by the
values of the attribute S. In the tuples contained in the thick-lined
box of the reduced SNDO1O2 relation in Figure 7(b), there ex-
ists the redundancy that the DO2-values (0, 0), (2, 8), and (3, 0)
repeatedly appear for the NO1-values (“AB”, 0), (“BC”, 1), and
(“CD”, 2). That is, the NO1-values and the DO2-values form a
Cartesian product in the tuples whose S-value is “ABCC”. We
note that such repetitions also occur in the other S-values.

Kim et al. [4] have shown the process of obtaining the n-
gram/2L index by decomposing the SNDO1O2 relation so as to
obey 4NF. Likewise, we obtain the n-gram/2L-Approximation
index by decomposing the reduced SNDO1O2 relation so as to
obey 4NF.

5.2 Analysis of the Index Size

The space complexity of the n-gram/2L-Approximation index
is the same as that of the n-gram/2L index. This is because,
as shown in Section 5.1, the n-gram2/L-Approximation index
is obtained through relational decomposition to the 4NF in the
same way as the n-gram/2L index is.

Kim et al. [4] have shown that the space complexity of the
n-gram index is O(avgngram × avgdoc), while that of the n-
gram/2L index is O(avgngram + avgdoc). Here, avgngram

is the average number of the n-grams extracted from an m-
subsequence, and avgdoc is the average number of occurrences
of an m-subsequence in the documents. Equation (5.1) shows the
ratio of the size of the n-gram index to that of the n-gram/2L in-
dex. Both avgngram and avgdoc tend to increase as the database
size gets larger. Since (avgngram × avgdoc) increases more
rapidly than (avgngram + avgdoc) does, the ratio in Equa-
tion (5.1) increases as the database size does. Therefore, the n-
gram/2L-Approximation index has the characteristic of reducing
the index size more for a larger database.

sizengram

sizefront + sizeback
≈ avgngram × avgdoc

avgngram + avgdoc
(5.1)

The size of the n-gram/2L-Approximation index is dependent
on the length m of m-subsequence. We denote the optimal length

of m that minimizes the index size by mo. To find mo, we
preprocess the document collection before building the index.
mo tends to increase as the database size does. See the work by
Kim et al. [4] for the detailed method of finding mo.

5.3 Analysis of the Query Performance

The parameters affecting the query performance of the n-
gram/2L-Approximation index are m, n, the error tolerance k,
and the length Len(Q) of the query string Q. In this section,
we conduct a ballpark analysis of the query performance to in-
vestigate the trend depending on these parameters. The query
processing time is the sum of the filtration time and refinement
time. By using a smaller n, the n-gram/2L-Approximation index
reduces the refinement time compared with the n-gram index as
explained in Section 4.2. In this section, we focus on the filtra-
tion time.

The analysis of the query performance in this paper is done in
a way similar to that in Kim et al. [4]. However, The analysis in
this paper is for approximate string matching queries, and that in
the earlier work is for exact string matching queries. The details
are completely different in the number of offsets and the number
of posting lists accessed during query processing.

For simplicity of our analysis, we first make the following
three assumptions. (1) the query processing time is proportional
to the number of offsets and the number of posting lists accessed.
The latter has a nontrivial effect on performance since access-
ing a posting list incurs seek time for moving the disk head to
locate the posting list. (2) the size of the document collection
is so large that all possible combinations of n-grams(=|�|n) or
m-subsequences(=|�|m), where � denotes the alphabet, are in-
dexed in the inverted index (for example, when |�| = 26 and
m = 5, |�|m = 11, 881, 376). Since the performance of query
processing is important especially in a large database, the sec-
ond assumption is indeed reasonable. (3) the number of disjoint
m-subsequences included in a query string Q is t ′ = �Len(Q)

m
�

rather than t = �Len(Q)+1
m

�−1. Third assumption is to simplify
computation.

We summarize in Table 2 the notation to be used for analyzing
the query performance.

5.3.1 Analysis of the Number of Offsets Accessed

The ratio of the query performance of the n-gram index to that
of the n-gram/2L-Approximation index is computed through
Equations (5.2)∼(5.5). The number of offsets accessed dur-
ing query processing is Koffset × Kplist . In the n-gram index,

since Koffset is sizengram

σn and Kplist is �Len(Q)
n

�, the query pro-
cessing time is as in Equation (5.2). In the front-end index of the
n-gram/2L-Approximation index, since Koffset is

sizef ront

σ n′ and

Kplist is (Len(Q) − n′ + 1), the query processing time is as
in Equation (5.3). In the back-end index of the n-gram/2L-
Approximation index, Koffset is sizeback

σm . Besides, Kplist is the
number of m-subsequences that ε-match with Q (ε = � k

t ′ �).
Kplist is at most (Len(Q)−m+1)×C(m, ε)σ ε because the num-
ber of m-subsequences extracted from Q is (Len(Q) − m + 1),
and there exist at most C(m, ε)σ ε m-subsequences that ε-match
with each m-subsequence. Note that C(m, ε)σ ε is the maximum

vol 22 no 6 November 2007 33



N-GRAM/2L-APPROXIMATION: A TWO-LEVEL N-GRAM INVERTED INDEX STRUCTURE FOR APPROXIMATE STRING MATCHING

S N D

ABCC AB

ABCC AB

ABCC AB

ABCC BC

ABCC BC

ABCC BC

ABCC CC

ABCC CC

ABCC CC

CCDA CC

CCDA CC

CCDA CD

CCDA CD

CCDA DA

CCDA DA

CDAB CD

CDAB CD

CDAB CD

CDAB DA

CDAB DA

CDAB DA

CDAB AB

CDAB AB

CDAB AB

DABC DA

DABC DA

DABC DA

DABC DA

DABC AB

DABC AB

DABC AB

DABC AB

DABC BC

DABC BC

DABC BC

DABC BC

(a) An example of the NDO relation.

0

0

0

1

1

1

2

2

2

0

0

1

1

2

2

0

0

0

O
1

1

1

1

2

2

2

0

0

0

0

1

1

1

1

2

2

2

2

(b) An example of the reduced SNDO1O2 relation.
(sorted by the values of the attribute S)

0

2

3

0

2

3

0

2

3

1

3

1

3

1

3

0

1

2

0

1

2

0

1

2

0

1

2

3

0

1

2

3

0

1

2

3

0

8

0

0

8

0

0

8

0

8

8

8

8

8

8

4

4

3

O
2

4

4

0

4

4

0

8

0

4

4

8

0

4

4

8

0

4

4

AB 0

N D

AB 0

AB 0

AB 1

AB 1

AB 2

AB 2

AB 2

AB 3

AB 3

BC 0

BC 0

BC 1

BC 1

BC 2

BC 2

BC 3

BC 3

BD 0

BD 2

CA 2

CC 0

CC 0

CC 1

CC 1

CC 2

CC 3

CC 3

CC 3

CD 0

CD 1

CD 1

CD 2

CD 3

CD 3

DA 0

DA 0

DA 1

DA 1

DA 1

DA 2

DA 2

DA 3

DA 3

0

O

6

9

1

6

2

5

8

0

5

1

10

2

7

6

9

1

6

7

3

7

2

3

3

8

10

2

7

8

4

4

9

0

3

9

5

8

0

5

10

1

4

4

10

S N D

ABCC AB

ABCC AB

ABCC AB

ABCC BC

ABCC BC

ABCC BC

ABCC CC

ABCC CC

ABCC CC

CCDA CC

CCDA CC

CCDA CD

CCDA CD

CCDA DA

CCDA DA

CDAB CD

CDAB CD

CDAB CD

CDAB DA

CDAB DA

CDAB DA

CDAB AB

CDAB AB

CDAB AB

DABC DA

DABC DA

DABC DA

DABC DA

DABC AB

DABC AB

DABC AB

DABC AB

DABC BC

DABC BC

DABC BC

DABC BC

(a) An example of the NDO relation.

0

0

0

1

1

1

2

2

2

0

0

1

1

2

2

0

0

0

O
1

1

1

1

2

2

2

0

0

0

0

1

1

1

1

2

2

2

2

(b) An example of the reduced SNDO1O2 relation.
(sorted by the values of the attribute S)

0

2

3

0

2

3

0

2

3

1

3

1

3

1

3

0

1

2

0

1

2

0

1

2

0

1

2

3

0

1

2

3

0

1

2

3

0

8

0

0

8

0

0

8

0

8

8

8

8

8

8

4

4

3

O
2

4

4

0

4

4

0

8

0

4

4

8

0

4

4

8

0

4

4

AB 0

N D

AB 0

AB 0

AB 1

AB 1

AB 2

AB 2

AB 2

AB 3

AB 3

BC 0

BC 0

BC 1

BC 1

BC 2

BC 2

BC 3

BC 3

BD 0

BD 2

CA 2

CC 0

CC 0

CC 1

CC 1

CC 2

CC 3

CC 3

CC 3

CD 0

CD 1

CD 1

CD 2

CD 3

CD 3

DA 0

DA 0

DA 1

DA 1

DA 1

DA 2

DA 2

DA 3

DA 3

0

O

6

9

1

6

2

5

8

0

5

1

10

2

7

6

9

1

6

7

3

7

2

3

3

8

10

2

7

8

4

4

9

0

3

9

5

8

0

5

10

1

4

4

10

Figure 7 An example showing the existence of non-trivial MVDs in the reduced SNDO1O2 relation.

Table 2 Summary of notation used for analyzing the query performance.

Symbols Definitions

� the alphabet
σ the size of the alphabet ( = |�|)
n the length of the n-gram in the n-gram index
n′ the length of the n-gram in the n-gram/2L-Approximation index
k the error tolerance (user-specified maximum acceptable edit distance)

Koffset the average number of offsets in a posting list
Kplist the number of posting lists accessed during query processing
C(a, b) combination: a choose b

t ′ the number of disjoint m-subsequences included in a query string Q

( = �Len(Q)
m

�)
ε the error tolerance used in the front-end index ( = � k

t ′ �)
λ the time to randomly access a posting list

number of distinct m-subsequences that can be generated by ε

edit operations. Hence, the query processing time in the back-
end index is as in Equation (5.4). Finally, Equation (5.5) shows
the ratio of the query processing times.

offset_t imengram = sizengram

σn
× �Len(Q)

n
� (5.2)

offset_t imef ront = sizef ront

σ n′ × (Len(Q) − n′ + 1)

(5.3)

offset_t imeback = sizeback

σm
× (Len(Q) − m + 1) × C(m, ε)σ ε

(5.4)

offset_t imengram

offset_t imengram/2L−Approximation

=

From Equation (5.5), we know that the time complexities
of those indexes are identical to their space complexities. By
substituting sizengram with O(avgngram × avgdoc), Equa-
tion (5.5) shows that the time complexity of the n-gram in-
dex is O(avgngram × avgdoc), while that of the n-gram/2L-
Approximation index is O(avgngram + avgdoc). The time
complexity indicates that the n-gram/2L-Approximation index
has a good characteristic that the query performance improves
compared with the n-gram index, and further, the improvement
gets larger as the database size gets larger.

From Equation (5.5), we note that the query processing time
increases at a lower rate in the n-gram/2L-Approximation index
than in the n-gram index as Len(Q) gets longer. In the front-
end index, the query processing time increases proportionally to
Len(Q), but it contributes a very small proportion of the total
query processing time because the index size is very small. The
size of the front-end index is much smaller than that of the n-gram
index because the total size of m-subsequences is much smaller

1
σn−n′

(
sizengram × �Len(Q)

n
�
)

(
sizef ront × (Len(Q) − n′ + 1)

) +
(
sizeback × (Len(Q) − m + 1) × C(m,ε)σ ε

σm−n′
) (5.5)

34 computer systems science & engineering



MIN-SOO KIM ET AL

than the total size of documents. Furthermore, in the back-
end index, Len(Q) little affects the query processing time since
C(m,ε)σ ε

σm−n′ is small1. This is also an excellent property since it has
been pointed out that the query performance of the n-gram index
for long queries tends to degrade significantly[14].

5.3.2 Analysis of the Number of Posting Lists Accessed

To analyze the query processing time more precisely, we should
take the time to locate posting lists into account. The time for
locating posting lists is kplist × α. Hence, by using kplist com-
puted in Equations (5.2)∼(5.4), we derive the time for locating
posting lists as shown in Equations (5.6)∼(5.8).

plist_t imengram = λ × �Len(Q)

n
� (5.6)

plist_t imef ront = λ × (Len(Q) − n′ + 1) (5.7)

plist_t imeback = λ × (Len(Q) − m + 1) × C(m, ε)σ ε (5.8)

From Equations (5.6)∼(5.8), we note that the time for locating
posting lists in the n-gram index is not affected by k, but that,
in the n-gram/2L-Approximation index, it increases as k gets
larger (we note that ε = � k

t ′ �). The reason for this increment
is as follows: the number of m-subsequences ε-matching with
Q increases as k gets larger by Equation (5.8), and thus, the
number of posting lists accessed in the back-end index increases.
Here, the number of m-subsequences ε-matching with Q shows
a staircase-like behavior as k gets larger due to the floor function
in ε = � k

t ′ �.
From Equation (5.8), we note that the time for locating post-

ing lists in the n-gram/2L-Approximation index is also affected
by m. plist_t imeback increases exponentially as m gets larger.
Hence, if we select (mo − 1) instead of mo for the length of
m-subsequences, we can significantly improve the query per-
formance while sacrificing a small increment of the index size.
Consequently, we use (mo − 1) for performance evaluation in
Section 6.

6. PERFORMANCE EVALUATION

6.1 Experimental Data and Environment

The purpose of our experiments is to compare the size and query
performance of the n-gram/2L-Approximation index with those
of the n-gram index. We use the index size ratio defined in
Equation (6.1) as the measure for the index size and the wall
clock time as the measure for the query performance.

index size ratio = the number of pages allocated for the n-gram index

the number of pages allocated for the n-gram/2L-Approximation index
(6.1)

1For a typical value of k, ε is smaller than (m−n′). If k is large enough such
that ε is larger than (m − n′), we can not have the benefit of using the front-end
index. Thus,we do not consider this case.

We could use the n-gram/2L index for approximate string
matching. However, for approximate string matching, the fil-
tration performance of the n-gram/2L index is worse than the
n-gram/2L-Approximation index as explained in Section 4.4.
Thus, we do not include experiments for the n-gram/2L index
here.

We have performed experiments using two real data sets. The
first one is the set of English text databases – WSJ, AP, and FR
in the TREC databases2 – used in information retrieval. We
use three data sets of 10 MBytes, 100 MBytes, and 1 GBytes.
We call each data set TREC-10M, TREC-100M, and TREC-
1G, respectively. The second one is the set of protein sequence
databases – nr, env_nr, month.aa, and pataa in the NCBI BLAST
web site3 – used in bioinformatics. We use three data sets of
10 MBytes, 100 MBytes, and 1 GBytes. We call each data set
PROTEIN-10M, PROTEIN-100M, PROTEIN-1G, respectively.
We remove tags, spaces, special characters, and numbers in the
TREC databases making the formats of the TREC data and the
PROTEIN data similar to exclude the influence of the format to
the results of the experiments.

To compare the index size, we measure the index size ratio
in the PROTEIN database and TREC database while varying
the database size. When creating the n-gram index, we set the
length n of the n-gram to be 3, which is the most practically
used one in n-gram applications [5, 15]. Besides, when creating
the front-end index of the n-gram/2L-Approximation index, we
set the length n′ of the n-gram index to be 2, which is shorter
than n (i.e., 3) as explained in Section 4.2. When creating the
back-end index of the n-gram/2L-Approximation index, we use
(mo − 1) as the length m of the m-subsequence as explained in
Section 5.3.1. For the trade-off between the filtration time and
the refinement time, n = 3, n′ = 2, and m = (mo − 1) are the
best for our experimental data (10 MBytes ∼ 1 GBytes).

To compare the query performance, we perform three kinds
of experiments while varying the following parameters: (1) the
database size; (2) the length of a query string; (3) the error tol-
erance. We adapt the experiments done in work by Navarro [6],
which is the well-known work in the area of approximate string
matching. We summarize in Table 3 the kinds of the experiments
and parameters for comparing the query performance.

Experiment 1: We measure the wall clock time while vary-
ing the database size. We set Len(Q) to be 50, which
is the half of the maximum query length (i.e., 100) used by
Navarro [6]. We set α to be 1

6 , which is the half of the max-
imum error ratio of 3-gram index (i.e., 1

3 ). Thus, k is set to
be 8 (k = Len(Q) × α = 50 × 1

6 ).

Experiment 2: We measure the wall clock time while varying
the query length for a small k and a large k. We set a small
α to be 1

9 , which is a third of the maximum error ratio
of 3-gram index (i.e., 1

3 ). Thus, k is Len(Q) × 1
9 . We set a

2http://trec.nist.gov
3http://www.ncbi.nlm.nih.gov/BLAST

vol 22 no 6 November 2007 35



N-GRAM/2L-APPROXIMATION: A TWO-LEVEL N-GRAM INVERTED INDEX STRUCTURE FOR APPROXIMATE STRING MATCHING

large α to be 2
9 , which is two thirds of the maximum error

ratio of 3-gram index (i.e., 1
3 ). Thus, k is Len(Q) × 2

9 .

Experiment 3: We measure the wall clock time while varying
the error tolerance k for a short Len(Q) and a long Len(Q).
We set a short Len(Q) to be 33, which is a third of the
maximum query length (i.e., 100) used by Navarro [6]. We
set a long Len(Q) to be 66, which is two thirds of the
maximum query length used by Navarro.

A query is composed of a query string Q and an error tolerance
k. Here, we repeat the experiment 50 times using randomly
selected queries from the database and present the average result.
We use an online algorithm proposed by Ukkonen et al.[12] for
refinement in the same way as Navarro[6] does.

We conduct all the experiments on a Pentium 2.6 GHz Linux
PC with 1 GBytes of main memory and 400 GBytes Seagate E-
IDE disks. To avoid the buffering effect of the LINUX file system
and to guarantee actual disk I/O’s, we use raw disks for storing
data and indexes. We use the inverted index implemented in the
Odysseus ORDBMS [13] for all the experiments. The page size
for data and indexes is set to be 4,096 bytes.

6.2 Experimental Results for the Index Size

Figure 8 shows the index size ratio as the database size is varied
for the PROTEIN database and TREC database. These results in-
dicate that the size of the n-gram/2L-Approximation index is re-
duced compared with that of the n-gram index. The index size ra-
tio increases as the database size does as analyzed in Section 5.2.
Figure 8(a) shows that the size of the 2-gram/2L-Approximation
index is reduced by 1.5∼1.8 times compared with that of 3-gram
index in the PROTEIN database. Figure 8(b) shows that the size
of the 2-gram/2L-Approximation index is reduced by 1.3∼1.8
times in the TREC database.

6.3 Experimental Results for the Query Per-
formance

6.3.1 Effects of Varying the Database Size

Figure 9 shows the query processing time of the n-gram index and
n-gram/2L-Approximation index as the database size is varied
for the PROTEIN database and TREC database. These results
indicate that we obtain a larger improvement of the query per-
formance as the database size gets larger as analyzed in Section
5.3.1. Figure 9(a) shows that the improvement in the query
performance is 0.8 times in PROTEIN-100M, but 3.9 times
in PROTEIN-1G. Figure 9(b) shows tendencies similar to Fig-
ure 9(a).

In Figure 9, we also show the query processing time of the
q-sample index proposed by Navarro et al. [9] for the competi-
tor. A q-sample is a subsequence of length q appearing at fixed
intervals h of a document. (Let us consider a document D as a
sequence of characters c0, c1, ..., cL−1. The ith q-sample of D is
the sequence ch(i−1), ..., ch(i−1)+q−1.) Since the q-sample index
consists of more sparse subsequences than the n-gram index, its
size is smaller than that of the n-gram index. However, since the

q-sample index checks the necessary condition with less subse-
quences, the number of candidates increases and, at the same
time, the refinement time increases. Figure 9 shows that the
query processing time of the q-sample index is much larger than
that of the n-gram/2L-Approximation index and even larger than
that of the n-gram index. Here, we set the length q and h to be
6, which is the optimal value for the q-sample index used by
Navarro et al.

6.3.2 Effects of Varying the Query Length

Figures 10 and 11 show the query processing time of the n-
gram index and n-gram/2L-Approximation index as the query
length is varied for PROTEIN-1G and TREC-1G. These results
indicate that the n-gram/2L-Approximation index improves the
query performance compared with the n-gram index with this
improvement becoming more marked as Len(Q) gets larger as
analyzed in Section 5.3.1. Especially, the query performance is
improved by up to 4.2 times compared with that of the n-gram
index for a small k (i.e., k = Len(Q)× 1

9 ) and by up to 2.2 times
for a large k (i.e., k = Len(Q) × 2

9 ). Besides, the difference in
the query performance between two indexes is smaller for a large
k in Figure 11 than for a small k in Figure 10. This is because the
time for locating posting lists in the n-gram index is not affected
by k, but that in the n-gram/2L-Approximation index increases
as k gets larger as analyzed in Section 5.3.2.

6.3.3 Effects of Varying the Error Tolerance

Figures 12 and 13 show the query processing time of the n-gram
index and n-gram/2L-Approximation index as the error tolerance
is varied for the PROTEIN-1G and TREC-1G. These results in-
dicate that the n-gram/2L-Approximation index improves the
query performance compared with the n-gram index in most
cases. Especially, the query performance is improved by up to
1.9 times compared with that of the n-gram index for a short
Len(Q) (i.e., Len(Q) = 33) and by up to 3.5 times for a long
Len(Q) (i.e., Len(Q) = 66).

It is worthwhile to note that the query processing time of the
n-gram/2L-Approximation index increases rapidly at k = 7 in
Figure 12(a). This is because ε = � k

t ′ � in Equation (5.8) in-
creases by one at k = 7. In fact, ε = 0 when k ≤ 6, and ε = 1
when k ≥ 7. Figures 12(b), 13(a), and 13(b) show tendencies
similar to Figure 12(a).

We can verify that the n-gram/2L-Approximation index im-
proves the maximum error ratio compared with the n-gram index
in Figures 12 and 13. The maximum error ratio of the 2-gram/2L-
Approximation index is 1

2 , while that of the 3-gram index is 1
3 .

In Figure 12(a), the 2-gram/2L-Approximation index is able to
process queries in a reasonable time at k = 11 and k = 13
due to a larger maximum error ratio, while the 3-gram index is
not. Figures 12(b), 13(a), and 13(b) show tendencies similar to
Figure 12(a).

7. CONCLUSIONS

In this paper, we have proposed the n-gram/2L-Approximation
index for approximate string matching. The n-gram/2L-
Approximation index reduces the index size and improves the

36 computer systems science & engineering



MIN-SOO KIM ET AL

Table 3 The kinds of the experiments and parameters for comparing the query performance.

Experiments Parameters

Experiment 1 Comparison of the query Data Set PROTEIN database, TREC database
performance while varying Data Size 10 MByte, 100 MByte, 1 GByte

the database size Len(Q) 50
k 8

Experiment 2 Comparison of the query Data Set PROTEIN-1G, TREC-1G
performance while varying Len(Q) 20, 40, 60, 80, 100

Len(Q) k Len(Q) × 1
9 , Len(Q) × 2

9
Experiment 3 Comparison of the query Data Set PROTEIN-1G, TREC-1G

performance while varying k 0∼Len(Q)
3

k Len(Q) 33, 66

1

1.2

1.4

1.6

1.8

2

10M 100M 1G

data size (Byte)

In
d
e
x
 s

iz
e
 r
a
ti
o

1

1.2

1.4

1.6

1.8

2

10M 100M 1G

data size (Byte)

In
d
e
x
 s

iz
e
 r

a
ti
o

(a) The index size ratio as the 
database size is varied.

(data set: PROTEIN, m = mo-1)

(b) The index size ratio as the 
database size is varied.

(data set: TREC, m = mo-1)

Figure 8 The index size ratio while varying the database size.

0.1

1

10

100

1000

10M 100M 1G

data size (Byte)

W
a
ll
 C
lo
c
k
 T
im
e
 (
s
e
c
)

3-gram index 2-gram/2L-Approximation index 6-sample index

0.1

1

10

100

1000

10M 100M 1G

data size (Byte)

W
a
ll
 C

lo
c
k
 T

im
e
 (

s
e
c
)

(a) The query processing time as 
the database size is varied.

(data set: PROTEIN, Len(Q)=50, k=8)

(b) The query processing time as 
the database size is varied.

(data set: TREC, Len(Q)=50, k=8)

Figure 9 The query processing time while varying the database size.

query performance compared with the n-gram index. We have
modified the n-gram/2L index [4], which the authors have ear-
lier proposed for exact matching, to improve the performance of
approximate string matching. The modifications are related to
the methods of extracting n-grams and m-subsequences. Due to
the modifications, we reduce the number of false positives and
improve the maximum error ratio.

We have theoretically analyzed the properties of the n-
gram/2L-Approximation index. First, we have proven in Section
5.1 that our index is derived by the relational normalization pro-
cess that decomposes the n-gram index into 4NF. Second, we
have analyzed the space complexity. Since the space complex-
ity of our index is O(avgngram +avgdoc) and that of the n-gram
index is O(avgngram × avgdoc), the reduction of the index size

vol 22 no 6 November 2007 37



N-GRAM/2L-APPROXIMATION: A TWO-LEVEL N-GRAM INVERTED INDEX STRUCTURE FOR APPROXIMATE STRING MATCHING

0

5

10

15

20

25

30

35

40

45

20 40 60 80 100

query length Len(Q)

W
a
ll
 C
lo
c
k
 T
im
e
 (
s
e
c
)

3-gram index 2-gram/2L-Approximation index

0

50

100

150

200

250

300

20 40 60 80 100

query length Len(Q)

W
a
ll
 C

lo
c
k
 T

im
e
 (

s
e
c
)

(a) The query processing time 
as Len(Q) is varied.

(data set: PROTEIN-1G, k = Len(Q)*1/9, m=4)

(b) The query processing time 
as Len(Q) is varied.

(data set: TREC-1G, k = Len(Q)*1/9, m=5)
Figure 10 The query processing time while varying Len(Q) for a small k (i.e., k = Len(Q) × 1

9 ).

0

10

20

30

40

50

60

20 40 60 80 100

query length Len(Q)

W
a
ll
 C
lo
c
k
 T
im
e
 (
s
e
c
)

3-gram index 2-gram/2L-Approximation index

0

50

100

150

200

250

300

20 40 60 80 100

query length Len(Q)

W
a
ll
 C

lo
c
k
 T

im
e
 (

s
e
c
)

(a) The query processing time 
as Len(Q) is varied.

(data set: PROTEIN-1G, k = Len(Q)*2/9, m=4)

(b) The query processing time 
as Len(Q) is varied.

(data set: TREC-1G, k = Len(Q)*2/9, m=5)
Figure 11 The query processing time while varying Len(Q) for a large k (i.e., k = Len(Q) × 2

9 ).

0

5

10

15

20

25

30

35

40

45

1 3 5 7 9 11 13

error tolerance k

W
a
ll
 C
lo
c
k
 T
im
e
 (
s
e
c
)

3-gram index 2-gram/2L-Approximation index

0

10

20

30

40

50

60

70

80

1 3 5 7 9 11

error tolerance k

W
a
ll
 C

lo
c
k
 T

im
e
 (

s
e
c
)

(a) The query processing time 
as k is varied.

(data set: PROTEIN-1G, Len(Q)=33, m=4)

(b) The query processing time 
as k is varied.

(data set: TREC-1G, Len(Q)=33, m=5)

The maximum error ratio

of 3-gram index

The maximum error ratio

of 3-gram index

Figure 12 The query processing time while varying k for a short Len(Q) (i.e., Len(Q) = 33).

38 computer systems science & engineering



MIN-SOO KIM ET AL

0

10

20

30

40

50

60

70

2 6 10 14 18 22 26

error tolerance k

W
a
ll
 C
lo
c
k
 T
im
e
 (
s
e
c
)

3-gram index 2-gram/2L-Approximation index

0

20

40

60

80

100

120

140

160

180

2 6 10 14 18 22

error tolerance k

W
a
ll
 C

lo
c
k
 T

im
e
 (

s
e
c
)

(a) The query processing time 
as k is varied.

(data set: PROTEIN-1G, Len(Q)=66, m=4)

(b) The query processing time 
as k is varied.

(data set: TREC-1G, Len(Q)=66, m=5)

The maximum error ratio

of 3-gram index

The maximum error ratio

of 3-gram index

Figure 13 The query processing time while varying k for a long Len(Q) (i.e., Len(Q) = 66).

becomes more marked as the database size gets larger. Third,
we have analyzed the time complexity. Since the time com-
plexity is shown to be the same as the space complexity, the
improvement of the query performance becomes more marked
as the database size gets larger. Besides, we have shown that
the query processing time increases at a lower rate in the n-
gram/2L-Approximation index than in the n-gram index as the
query length gets longer.

We have performed extensive experiments for the index size
and query performance of the n-gram/2L-Approximation index
varying the data set, database size, query length, and error toler-
ance. Experimental results using real text and protein databases
of 1 GBytes show that the size of the n-gram/2L-Approximation
index is reduced by up to 1.8 (PROTEIN-1G, m = 4) times and,
at the same time, the query performance is improved by up to
4.2 (PROTEIN-1G, m = 4, α = 1

9 ) times compared with those
of the n-gram index.

Overall, we believe that our index is capable of efficiently
handling various applications for approximate string matching,
for example, searching text documents with typographical errors
and finding DNA or protein sequences with possible mutations.

Acknowledgement

This work was supported by the Ministry of Science and
Technology (MOST) / Korea Science and Engineering Founda-
tion (KOSEF) through the Advanced Information Technology
Research Center (AITrc). This work was supported by Brain
Korea 21 Project, the school of information technology, KAIST
in 2006.

REFERENCES

1. Baeza-Yates, R. and Ribeiro-Neto, B., Modern Information Re-
trieval, ACM Press, 1999.

2. Elmasri, R. and Navathe, S. B., Fundamentals of Database Sys-
tems, 4th ed., Addison Wesley, 2003.

3. Gravano, L., Ipeirotis, P. G., Jagadish, H. V., Koudas, N., Muthukr-
ishnan, S., and Srivastava, D., “Approximate String Joins in a
Database (Almost) for Free,” In Proc. 27th Int’l Conf. on Very
Large Data Bases (VLDB), Rome, Italy, pp. 491–500, Sept. 2001.

4. Kim, M., Whang, K., Lee, J., and Lee, M., “n-Gram/2L: A Space
and Time Efficient Two-Level n-Gram Inverted Index Structure,”
In Proc. 31st Int’l Conf. on Very Large Data Bases (VLDB), Trond-
heim, Norway, pp. 325–336, Aug./Sept. 2005.

5. Kukich, K., “Techniques for Automatically Correcting Words in
Text,” ACM Computing Surveys, Vol. 24, No. 4, pp. 377–439, Dec.
1992.

6. Navarro, G., “A Guided Tour to Approximate String Matching,”
ACM Computing Surveys, Vol. 33, No. 1, pp. 31–88, Mar. 2001.

7. Navarro, G. and Baeza-Yates, R., “A Hybrid Indexing Method for
Approximate String Matching,” Journal of Discrete Algorithms,
Vol. 1, No. 1, pp. 205–239, 2000.

8. Navarro, G., Baeza-Yates, R., Sutinen, E., and Tarhio, J., “Indexing
Methods forApproximate String Matching,” IEEE Data Engineer-
ing Bulletin, Vol. 24, No. 4, pp. 19–27, Dec. 2001.

9. Navarro, G., Sutinen, E., and Tarhio, J., “Indexing Text with Ap-
proximate q-grams,” Journal of Discrete Algorithms (JDA), Vol. 3,
No.2, pp.157-175, 2005.

10. Shi, F., “Fast Approximate String Matching with q-Blocks Se-
quences,” In Proc. 3rd South American Workshop on String Pro-
cessing (WSP’96), pp. 257–271, Carleton University Press, 1996.

11. Silberschatz,A., Korth, H. F., and Sudarshan, S., Database Systems
Concepts, 4th ed., McGraw-Hill, 2001.

12. Ukkonen, E., “Finding Approximate Patterns in Strings,” Journal
of Algorithms, Vol. 6, pp. 132–137, 1985.

13. Whang, K., Lee, M., Lee, J., Kim, M., and Han, W., “Odysseus:a
High-Performance ORDBMS Tightly-Coupled with IR Features,”
In Proc. 21st IEEE Int’l Conf. on Data Engineering (ICDE), Tokyo,
Japan, pp. 1104–1105, Apr. 2005. (This paper received the Best
Demonstration Award.)

14. Williams, H. E., “Genomic Information Retrieval,” In Proc. 14th
Australasian Database Conferences, Adelaide, Australia, pp. 27–
35, 2003.

15. Williams, H. E. and Zobel, J., “Indexing and Retrieval for Genomic
Databases,” IEEE Trans. on Knowledge and Data Engineering,
Vol. 14, No. 1, pp. 63–78, Jan./Feb. 2002.

vol 22 no 6 November 2007 39



N-GRAM/2L-APPROXIMATION: A TWO-LEVEL N-GRAM INVERTED INDEX STRUCTURE FOR APPROXIMATE STRING MATCHING

Appendix A. Proof of Theorem 1
We prove Theorem 1 for each condition.

Condition (1): One edit operation is able to modify at most n

of (m−n+1) n-grams. ε edit operations are able to modify
at most (ε × n) of (m − n + 1) n-grams. Thus, among the
set of n-grams {Gi}, at least r = (m − n + 1) − (ε × n)

n-grams {gj } must appear in the m-subsequence S and the
query string Q.

Condition (2): ε edit operations change the offset of gj by at
most ε. Thus, the offset osj of gj within S and the 0-offset
owj of gj within ε-substring(Q) satisfy |owj − osj | ≤ ε.
Since owj = (oqj − p), we have |(oqj − p) − osj | ≤ ε.

Appendix B. Proof of Theorem 2

We prove Theorem 2 for each condition.

Condition (1): No matter how we apply ε edit operations to t

m-subsequences, at least one m-subsequence with at most

� ε
t
� errors appears in a query string Q. That is, at least one

m-subsequence � ε
t
�-matches with Q. Now, we compute the

maximum number of m-subsequences � ε
t
�-matching with

Q. We try to minimize the number of m-subsequences � ε
t
�-

matching with Q when ε edit operations are applied. This is
achieved by distributing (� ε

t
�+1) edit operations among m-

subsequences to the extent possible. The maximum number
of m-subsequences which (� ε

t
� + 1) edit operations are

applied to is � ε
� ε

t
�+1�. Thus, at least r = t − � ε

� ε
t
�+1�

m-subsequences of t m-subsequences must appear in the
query string Q with at most � ε

t
� edit operations (i.e., � ε

t
�-

matching with Q).

Condition (2): ε edit operations change the offset of sj by at
most ε. Thus, the offset owj of sj within ε-substring(D) and
the � ε

t
�-offset oqj of sj within the query string Q satisfy

|owj − oqj | ≤ ε. Since owj = (odj − p), we have |(odj −
p) − oqj | ≤ ε.

40 computer systems science & engineering


