
A Graph-based Database Partitioning Method
for Parallel OLAP Query Processing

Yoon-Min Nam, Min-Soo Kim*, Donghyoung Han
DGIST, Republic of Korea

{ronymin, mskim, icedrak}@dgist.ac.kr

Abstract—As the amount of data to process increases, a
scalable and efficient horizontal database partitioning method
becomes more important for OLAP query processing in parallel
database platforms. Existing partitioning methods have a few
major drawbacks such as a large amount of data redundancy
and not supporting join processing without shuffle in many cases
despite their large data redundancy. We elucidate the drawbacks
arise from their tree-based partitioning schemes and propose
a novel graph-based database partitioning method called GPT
that improves query performance with lower data redundancy.
Through extensive experiments using three benchmarks, we show
that GPT significantly outperforms the state-of-the-art method
in terms of both storage overhead and query performance.

1 INTRODUCTION

As the amount of data to process increases, a scalable and
efficient parallel database platform becomes more important. A
number of parallel database platforms exist, including Apache
Spark [1], Apache Impala [2], SAP HANA [3], HP Vertica [4]
and Greenplum [5]. To exploit parallel data processing for
OLAP queries, they typically store data blocks over a cluster
of machines, execute local operations in each machine, and
then repartition (shuffle) the local processing results to handle
join or aggregation. Here, repartitioning is an expensive remote
operation involving network communication, and its cost tends
to increase as the data size or the number of machines
increases [6], [7], [8].

In order to avoid expensive join operations with shuffle,
a number of methods have been proposed to horizontally
partition a database in an offline manner [9], [10], [11],
[12]. The methods in [9], [10] co-partition only the tables
containing the common join keys. However, these methods
are not particularly useful for complex schema with many
tables or for complex queries with join paths over multiple
tables that use different join keys. The REF method [11]
partitions a table R by a foreign key of R referring to another
table S that is already partitioned by a primary or foreign
key of S. The PREF method [12], which is the state-of-the-
art method, generalizes the REF method by exploiting not
only referential constraints but also join predicates (PREF-
partitioning for short). PREF fully replicates manually selected
small tables and partitions the remaining large tables. If query
workload is available, PREF uses a workload-driven (WD)
algorithm that uses the query workload to automatically find
the best partitioning scheme. Otherwise, it uses a schema-
driven (SD) algorithm that uses the database schema. The
PREF/SD algorithm usually returns a single tree as a result,
where a node indicates a table to be partitioned and an edge
indicates PREF-partitioning. The root of the tree is called

* Author to whom correspondence should be addressed.

a seed table, which is hash-partitioned. Each of the seed’s
descendant tables is partitioned by an edge with its parent
table. The PREF/WD algorithm usually returns a set of trees,
i.e., a forest, as a result. PREF/WD tends to generate many
trees to maximize the data-locality, where the same table might
occur in multiple trees, and therefore, be duplicated many
times.

Although PREF is the state-of-the-art partitioning method, it
still has three major drawbacks. First, PREF/SD tends to cause
a large number of tuple-level duplicates, and this tendency
becomes more marked as the database schema becomes more
complex. This large amount of duplicates causes the initial
bulk loading of a database to be very slow. Second, PREF/WD
tends to cause a large number of table-level duplicates. That is,
it stores the same table many times across partitions. Third,
PREF requires shuffle for query processing in many cases,
despite its large data redundancy, and so, query performance
tends to be degraded. Most of the drawbacks of PREF come
from its tree-based partitioning scheme. In PREF, all edges in
a tree or forest have a direction from source (i.e., referencing
table) to destination (i.e., referenced table), which incurs so-
called cumulative redundancy [12]. In addition, no cycles are
allowed in the tree-based partitioning scheme, and so, join
operations in complex queries cannot be processed without
shuffle in many cases, but must be processed with shuffle. We
present the above drawbacks in detail in Section 2.

To solve the above problems, we propose a novel graph-
based database partitioning method called GPT. Intuitively,
the GPT method determines an undirected multigraph from
a schema graph or workload graph as its partitioning scheme.
In the undirected multigraph, a vertex represents a table to
be partitioned, and an edge represents a co-partitioning rela-
tionship. Since the partitioning scheme is a single graph where
each table occurs only once, there are no table-level duplicates.
For co-partitioning between two tables, we propose the hash-
based multi-column (HMC) partitioning method. It is a kind
of hash-based partitioning method that has no parent-child
dependencies among tables. Due to no dependency among
tables, it does not incur cumulative redundancy. Consequently,
it results in far fewer tuple-level duplicates.

The GPT method determines the undirected multigraph so
as to contain many triangles of vertices (tables). Therefore,
most join operations involving the tables in these triangles
can to be processed without network communication. Here,
GPT determines the partitioning scheme so that these trian-
gles have common shared vertices called hub tables, which
improve the query performance while using less storage space.
GPT also determines the partitioning scheme in a cost-based
manner by considering the trade-off between the benefit of

query processing without shuffle and the penalty of storage
overhead (i.e., the number of tuple duplicates). Under this
partitioning scheme, even the complex queries in the TPC-DS
benchmark can be processed in a single MapReduce round in
many cases.

The main contributions of this paper are as follows:
• We propose a novel and general database partitioning

method for OLAP queries on parallel database systems
called GPT that improves query performance with lower
data redundancy. It determines an undirected multigraph
as a partitioning scheme by considering both the penalty
of storage overhead and the benefit of query processing
without shuffle.

• We propose the hash-based multi-column (HMC) parti-
tioning method for an edge of the undirected multigraph
that has no cumulative redundancy and faster initial bulk
loading.

• We propose a method for eliminating tuple duplicates that
exist in the partitioned database during query processing.

• We have shown that GPT significantly outperforms the
state-of-the-art method in terms of both storage overhead
and query performance using the TPC-DS benchmark.

The rest of this paper is organized follows. In Section 2,
we present our motivation. In Section 3, we propose the GPT
method. Section 4 presents the HMC partitioning methods and
the basic query processing method for GPT. Section 5 presents
the experimental results, and Section 6 discusses related work.
Finally, Section 7 concludes this paper.

2 MOTIVATION

In this section, we explain our motivation and discuss
the drawbacks of PREF using the TPC-DS benchmark. We
first briefly introduce the PREF method. Second, we show
that two kinds of duplicates, tuple-level duplicates and table-
level duplicates, exist in a database partitioned by PREF in
Sections 2.2 and 2.3. Third, we show that due to its tree-based
partitioning schemes, query processing on top of a database
partitioned by PREF tends to require shuffles during many join
operations.

2.1 PREF method

PREF/SD takes a schema as an input graph and generates
a set of maximum spanning trees by considering each node in
the graph as a root node. That is, when the input graph has
m nodes (tables), PREF/SD generates m trees. Among the m
trees, PREF/SD chooses the tree that has the minimum data
redundancy.

PREF/WD follows two steps. In the first step, it takes a
query as an input graph and finds the best maximum spanning
tree for the query as in PREF/SD. PREF/WD performs this
step for every query. In the second step, it merges similar
trees that have common nodes and edges into a single tree
with the goal of reducing the overall data redundancy. As a
result, it becomes to find several trees, i.e., a forest, where the
same table might occur in multiple trees.

2.2 Tuple-level Duplicates

Figure 1 shows the schema-driven partitioning schemes
determined by PREF and GPT for TPC-DS, where each box

indicates a partitioned table. The tables of TPC-DS not shown
in the partitioning schemes are replicated across partitions.
For simplicity, we use only the abbreviations of the table
names in this paper. In addition, we omit the names of
partitioning columns for the tables in Figure 1. In Figure 1, the
partitioning scheme determined by PREF/SD is a tree, whereas
the partitioning scheme determined by GPT/SD is a graph. We
note that Figure 1(b) depicts a simplified form of the actual
partitioning scheme graph, which will be shown in Section 3.5.

(a) PREF/SD (b) GPT/SD

CS CR

C

I

WS

WR

SR SS

Inv

CD

SS

CR

SR

WS
CS

D

WP
CP

HD
C
T
CA

I

Inv
WR

SS.sold_date =
D.date

Fig. 1. Schema-driven partitioning schemes of PREF and GPT.

The tree-based partitioning scheme of PREF/SD tends to
cause a large amount of duplicate tuples. For instance, in
Figure 1(a), the seed table CD is hash-partitioned, and its child
table SS is partitioned on a key from table CD. Then, table
D is partitioned on the foreign key sold date of table SS.
This can cause a number of duplicated tuples of table D in
every partition since SS.sold date is a foreign key. Moreover,
two child fact tables of D, i.e., WR and Inv, are almost
fully duplicated in every partition. That is, if a referenced
table (i.e., D) contains duplicates, the referencing tables (i.e.,
WR and Inv) also inherit those duplicates. This phenomenon
is called cumulative redundancy [12]. In general, cumulative
redundancy becomes more serious as the database schema
becomes more complex, and the tree becomes deeper.
2.3 Table-level Duplicates

Figures 2(b) and (c) show the workload-driven partitioning
schemes determined for TPC-DS by GPT and PREF, respec-
tively. The partitioning scheme determined by PREF/WD is a
forest, whereas that by GPT/WD is still a graph. The actual
partitioning scheme by PREF/WD consists of seven trees, and
we show only three of these trees in Figure 2(c).

Fig. 2. Workload-driven partitioning schemes of PREF and GPT.

The partitioning scheme of PREF/WD has fewer tuple-level
duplicates than does that of PREF/SD due to its lower depth

of each tree in the forest. Instead, however, it includes a large
number of table-level duplicates. For instance, in Figure 2(c),
the large fact table SS appears repeatedly in Tree#2, Tree#4,
and Tree#5. Here, we note that the table SS is partitioned
differently in each tree since the paths from the root table
in each tree are different. The tables shown in gray indicate
table duplicates. In general, as the query workload increases,
PREF/WD determines more trees. Therefore, the number of
table duplicates also increases.

In contrast, as shown in Figure 2(b), GPT/WD has no such
table-level duplicates since its partitioning scheme is a single
graph. The graph determined by GPT/WD is usually similar to
that constructed by GPT/SD. We will explain how to determine
such a graph and how to partition a table with considering its
many adjacent tables in the graph in Section 3.

2.4 Join Operations with repartitioning

In spite of its large data redundancy, the tree-based partition-
ing schemes of PREF require shuffle during join operation in
many cases, which can degrade query performance. A complex
analytic query may contain cycles in the corresponding query
join graph, and repartition operations are unavoidable when
processing such cycles using PREF since it does not allow
cycles in its partitioning scheme.

For example, Figure 2(a) shows the query join graph for
the TPC-DS Q17 query, which involves five partitioned tables
and nine join conditions. Each edge in the graph indicates
one or more join conditions between the corresponding two
end tables. When executing the Q17 query on top of the
database partitioned by PREF/WD in Figure 2(c), Tree#2 is
used (details in [12]). In Tree#2, the tables and join operations
used for Q17 are drawn using thick boxes and thick lines,
respectively. Some join operations such as SS-I and SS-D
can be processed without shuffle since the database is already
partitioned appropriately. However, when projecting the query
join graph of Q17 onto Tree#2, two dotted red edges, CS-D
and SR-D, do not exist in Tree#2, which means those two
edges must be processed by join operations with shuffle.

In contrary, all the join operations of Q17 can be processed
without shuffle on the database partitioned by GPT/WD. When
projecting the query join graph of Q17 onto the partitioning
scheme by GPT/WD in Figure 2(b), the query join graph
becomes a subgraph of GPT/WD, and so, all joins can be
processed in a single MapReduce round. As shown in Fig-
ure 5(b) in more detail, three tables CS, SR and SS used
in Q17 are partitioned by their date and item columns due
to two “hub” tables D and I in GPT/WD. Here, the pair of
tables CS and SR have a common partition column, item,
although we do not co-partition those tables explicitly. GPT
performs hash-based partitioning on the partition column(s) of
each table, and so, the tables CS and SR are co-partitioned
implicitly. As a result, the join condition CS.item = SR.item
in Q17 can be processed without shuffle. We call this type
of edge between CS and SR an indirect join edge. In fact,
there are many other indirect join edges in Figure 2(b), but
we omit them for simplicity. Our GPT method determines a
partitioning scheme by considering such indirect join edges,
which we will explain in Section 3. The method of generating

and optimizing a query plan is beyond the scope of this paper.
Instead, we present a basic query processing method for the
database partitioned by GPT in Section 4.

3 GPT METHOD

In this section, we propose our graph-based database
partitioning (GPT) method. GPT determines an undirected
multigraph as a partitioning scheme for a given schema or
workload graph. Section 3.1 introduces input join graph and
output partitioning scheme. Section 3.2 presents the problem
definition, Section 3.3 explains the triangles and hubs in
the partitioning scheme, Section 3.4 proposes the partitioning
algorithm, and Section 3.5 shows a case study using TPC-DS.
We summarize the symbols used in the paper in Table 1.

TABLE I
LIST OF SYMBOLS.

Symbol Meaning
C(T) a set of partitioning columns for a table, T
P (T) the horizontally partitioned table for table T
T [i] i-th column of T (i ∈ Z+)
||T || the size of T (in bytes)
||P (T)|| the size of the partitioned table P (T) (in bytes)
N the number of horizontal partitions

3.1 Join Graph and Partitioned Graph

We construct an input graph from a database schema or
query workload. We simply call it as join graph and define it
in Definition 1.

Definition 1: (Join graph) A join graph G=(V,E, l(e ∈
E), w(e ∈ E)) is an undirected and weighted multigraph.
A vertex v ∈ V denotes a table. An edge e ∈ E denotes
a (potential) join relationship between two tables R and S,
especially between R[i] and S[j], where i ∈ R, and j ∈ S.
The labeling function l(e) returns the equi-join predicates for
edge e, i.e., l(e) = (R[i], S[j]). The weight function w(e)
returns the join frequency of the edge e.

A join graph is constructed using either a schema-
driven approach or a workload-driven approach. The schema-
driven (SD) approach generates a join graph GS = (VS , ES)
based on the database schema S. The set of tables in S
becomes VS , and the set of referential constraints in S
becomes ES , which are considered as potential equi-join
operations. The weight function w(e) of GS returns 1. The
workload-driven (WD) approach generates a join graph GW =
(VW , EW) based on the query workload W . The set of
tables appeared in W becomes VW , and the set of equi-join
predicates in W becomes EW . The weight function w(e) of
GW returns the number of occurrences of the join predicate
l(e) in the workload W , i.e., the join frequency of e in W .

We denote the resulting partitioning scheme as PG, which
is a subgraph of the input join graph G (i.e., PG ⊆ G). To
determine PG, we start from an empty PG s.t. PG.V = ∅ and
PG.E = ∅. We regard adding a vertex v ∈ G.V to PG (i.e.,
v ∈ PG.V) as a horizontal partitioning of table v and regard
not adding a vertex v ∈ G.V to PG (i.e., v /∈ PG.V) as
replicating table v across machines. In addition, we regard
adding an edge e ∈ G.E in PG (i.e., e ∈ PG.E) as co-
partitioning two end tables of e according to l(e). We need to
decide whether to add each v to PG or not, and also whether
to add each e to PG or not.

As described above, we categorize the vertices (i.e., tables)
of G into two types: Part-tables and Rep-tables. For a Part-
table T , we let C(T) be a subset of the columns of T used for
partitioning T . We note that if e = (R[i], S[j]) exists in PG,
then R[i] ∈ C(R), and S[j] ∈ C(S). When a vertex (table) T
is of the Part type and has no edges, then it means C(T) = ∅,
and we simply split T into fixed size blocks and distribute
them across machines randomly. When T is of the Rep type,
we do not need to choose a set of partitioning columns for T .
However, when T is of the Part type, we need to choose its
partitioning columns carefully since it can affect both storage
overhead and query performance.
3.2 Determination of Vertices

We consider a good partitioned graph can improve the query
performance largely using only a small amount of additional
storage space. Without loss of generality, there are two criteria
for evaluating the goodness of PG: space overhead from
data redundancy and query performance improvement by co-
partitioning. We try to find the optimal partitioned graph
PG∗ that maximally satisfies these criteria under a certain
cost function. However, since there are up to 2|V | possible
combinations in terms of vertices of PG and up to 2|E|

possible combinations in terms of edges of PG, finding PG∗

might be computationally prohibitive. For example, in the
TPC-DS benchmark, |V | is greater than 20, and |E| is larger
than 100, and furthermore, problems in many real applications
exceed the size of TPC-DS benchmark [13], [14].

To solve this problem, we use a heuristic approach consist-
ing of the following two steps: determining the set of vertices
to be added to PG, and then, determining the set of edges
among those vertices to be added to PG. We present the first
step in this section, and the second step in Section 3.4.

As described above, determining a vertex v as a Part type
means partitioning v horizontally, while determining v as a
Rep type means fully replicating v across partitions. Fully
replicating a table smaller than a certain fixed threshold is a
widely used technique in parallel database system [8]. PREF
also uses a fixed threshold (e.g., 1000 tuples). However, GPT
uses an adaptive threshold rather than a fixed one, where the
decision to partition or replicate v is based on the sizes of v’s
adjacent tables.

Let adj(T) be a set of adjacent tables of a table T in a join
graph. We can formulate a total cost of I/O operations for an
equi-join among table T and adj(T) as shown in Eq.(1) for a
T of the Part type, or as shown in Eq.(2) for a T of the Rep
type. Here, we assume that the cost of an equi-join between
T and S (S ∈ adj(T)) is proportional to the sum of the sizes
of T and S. At this point, we do not yet know the type of S,
and so, regard it as a Part type for simplicity. Since S is of
a Part type, no shuffle will be required for join between T
and S in either equation.
PartCost(T) = ||P (T)||·|adj(T)|+

∑
S∈adj(T)

||S|| · |C(S)| (1)

RepCost(T)=||T ||·N ·|adj(T)|+
∑

S∈adj(T)

||S||(|C(S)| − 1) (2)

In Eq.(1), we assume that the partitioned table P (T) is
scanned |adj(T)| times due to the join with its adjacent tables,

R[i]𝑹 X[m]

S[j]𝑺 Y[n]

T[k]𝑒
𝑻

Part-table

Hub-table

triEdges(e)
indirect join edge of e1 and e2

𝑒1

𝑒2

𝑿

𝒀
Fig. 3. Examples of triangle edges, an indirect join edge, and a Hub-
table ({e, e1, e2, triEdges(e, T [k])} ⊂ E).

and each adjacent table S ∈ adj(T) is scanned once. The size
of a partitioned table P (S) can reach up to ||S|| · |C(S)|,
since the table S can be co-partitioned with its adjacent tables
using its |C(S)| different columns, and no correlation exists
among these columns. Likewise, in Eq.(2), we assume that the
replicated table T over N partitions is scanned |adj(T)| times.
Here, we can regard the size of a partitioned table P (S) as
||S|| · (|C(S)| − 1) since there is no edge between T and S,
and thus, there is one less partitioning column.

In Eqs.(1)-(2), it is difficult to know |C(S)| for each
S in advance. We can eliminate the term by calculating
PartCost(T)−RepCost(T) as in Eq.(3).
DiffCost(T)=(||P (T)||−||T ||·N)|adj(T)|+

∑
S∈adj(T)

||S|| (3)

If DiffCost(T) ≥ 0 for a table T , we classify T as the
Rep type. Otherwise, we classify T as the Part type (i.e.,
diffPR(T) < 0). Intuitively, under a fixed N , when table T
is relatively small, and has a large number of adjacent tables
whose sizes are relatively large, then DiffCost(T) tends to
be larger than zero. In this case, T is classified as the Rep
type.
3.3 Triangles and Hubs

In real graphs, a hub vertex is one connected to many other
vertices. Likewise, join graphs of real databases can include
hub tables that are connected with many other tables [14].
We denote these tables as Hub-tables. We have observed
that there are a lot of triangles of tables that share Hub-
tables as common vertices in the join graphs. These triangles
provide many opportunities to improve query performance via
join without shuffle. For instance, Figure 2(b) shows three
explicit triangles of tables, (CS,CR,D), (SR, SS,D), and
(WS,WR,D), that share a hub table D. Many more implicit
triangles exist due to indirect join edges, but we omit them.

We explain the concepts of triangle edges, indirect join
edge, and Hub-table using Figure 3, where, for simplicity, we
assume each of the five tables R, S, T , X , and Y has only
a single column. In Figure 3, we regard the triangle edges
triEdges(e, T [k]) for a given edge e and a vertex T [k] as
the two edges (R[i], T [k]) and (S[j], T [k]). Here, triEdges
(e, T [k]) and e form a triangle together in the join graph G.
The table T might have additional columns that satisfy the
above condition, and thus form multiple triangles together with
e. We denote a set of those {k} columns of T as triCols(e, T).
In Figure 3, we regard the indirect join edge (X[m], Y [n]) as
one that does not exist in G, but forms a triangle together
with two edges e1 and e2 via T [k]. Then, we informally
define a Hub-table as a table that forms one or more triangles
4(a, b, c) together with either an actual edge e ∈ E or an
indirect join edge, similar to T in the figure.

We note that an edge such as e = (R[i], S[j]) might have
multiple Hub-tables that form triangles with it. We denote

these as hub(e) as follows:

hub(e) = {Ti | ∃k ∈ Ti : 4(e, triEdges(e, Ti[k]))} (4)

In addition, we denote the set of all triangle edges that share
the edge e as triEdges(e):

triEdges(e) =
⋃

Ti∈hub(e),k∈triCols(e,Ti)

triEdges(e, Ti[k]) (5)

A Hub-table T can improve query performance through
horizontal partitioning T on the column T [k] in many cases.
Thus, we change the type of a Hub-table from the Rep type to
the Part type. In detail, adding an actual edge e=(R[i], S[j])
to PG, i.e., co-partitioning on e, allows three joins, i.e.,
(R[i], S[j]) (R[i], T [k]) and (S[j], T [k]), to be processed
without shuffle. Partitioning T on T [k] is also effective even
when e is an indirect join edge. In Figure 3, co-partitioning
on (R[i], T [k]) and (S[j], T [k]) allows processing the join
operation e = (R[i], S[j]) without shuffle and without explicit
co-partitioning on e. This approach can be particularly useful
for a SD join graph, where e does not appear in a database
schema, but appears in the query workload. Therefore, in
general, when a Hub-table T has a higher degree, i.e.,
is shared among more triangles, partitioning T can further
improve query performance.

3.4 Determination of Edges

Now, we discuss how to determine the set of edges among
the vertices to be added to PG. Since determining the optimal
set of edges for PG is still too difficult, we set a limit on
the number of partitioning columns for each vertex, instead
of allowing an arbitrary number of partitioning columns to
be used. We denote the limit on the number of partitioning
columns as κ.

It is a user-defined parameter that can control the space
overhead of PG as a single knob. Since κ limits the number
of partitioning columns for each table, the maximum size of
an entire partitioned database is approximately proportional
to κ. As we use a higher κ, the size of the partitioned
database increases, and at the same time, the opportunity of
join operation without shuffle also increases.

Given κ, i.e., the space overhead parameter, we can improve
the query performance by choosing a set of good edges to be
added to PG. To evaluate the goodness of PG, we use the
concept of the benefit of choosing the set of edges PG.E. We
denote the cost function for the concept by benefit(PG.E),
which means the sum of the amount of disk I/O for processing
a join without shuffle under PG. Without loss of generality,
we can say a PG that has a bigger benefit(PG.E) value
is a better partitioning scheme. Thus, our goal is to find the
optimal partitioned graph PG∗ that maximizes the benefit. We
let a set of all possible PGs for a given κ be PGκ. Then, we
can define our problem as shown in Problem Definition 2.

Definition 2: (Problem Definition) Given a database D
and a join graph G = (V ,E, l, w), the problem is finding
the optimal partitioned graph PG∗ such that

PG∗=argmax
PGi∈PGκ

{benefit(PGi.E)}. (6)

The purpose of our GPT method is to find a near opti-
mal partitioned graph PG (≈ PG∗) that can improve the
query performance largely using only a reasonable amount
of additional storage compared with the original unpartitioned
database. In particular, we use a bottom-up approach that adds
an edge one-by-one to the initial no-edge PG. In addition, we
should consider adjusting the types of some Hub-vertices of
PG from the Rep type to the Part type, as explained in
Section 3.3. The GPT method both determines the edges and
adjusts the vertices for PG in an intertwined manner.

In general, adding an edge e to PG increases the storage
overhead due to tuple duplicates from co-partitioning. To
measure the storage overhead, we adopt the definition of data
redundancy(DR) for database D in Eq.(7) [12]. A zero DR
value means that ||P (D)|| is equal to ||D||, i.e., no additional
storage overhead occurs from horizontal partitioning.

DR(D) =
||P (D)||
||D||

− 1 =

∑
Ti∈D ||P (Ti)||∑
Ti∈D ||Ti||

− 1 (7)

Now, we discuss the benefit(e) in Eq. 6, i.e., the benefit
when adding an edge e to PG, which means the amount of
disk I/O required to process a join without shuffle thanks to
e ∈ PG. We define the sum of the sizes of two end tables of
e as ||e||. The benefit increases proportionally to w(e) as well
as to ||e||, where w(e) = 1 for a schema-driven join graph.
Let us consider the case of adding the first single edge e to the
no-edge PG. This addition does not increase DR since both
tables are hash-partitioned on their single column, and we can
say that the benefit of adding e is w(e) × ||e||. Here, there
is no penalty in terms of storage overhead. The GPT method
chooses such edges with high priority.

To evaluate the benefit of each edge in a join graph, we
categorize the edges into three types: intra edges among Part-
tables, inter edges between Part-table and Rep-table, and the
indirect join edges defined in Section 3.3. We denote three
kinds of edges as Ea, Er, and Et, respectively. We do not
consider the edges between two Rep-tables since Rep-tables
already have edges with all other tables implicitly. Below, we
present the benefit of initially adding an intra edge e ∈ Ea in
Eq.(8), an inter edge e ∈ Er in Eq.(9), and an indirect join
edge e ∈ Et in Eq.(10).

benefit(e ∈ Ea)= ||e|| · w(e)+
∑

e′∈triEdges(e)

(||e′|| · w(e′)) (8)

benefit(e ∈ Er) = ||e|| · w(e) (9)

benefit(e ∈ Et) =
∑

e′∈triEdges(e)

(||e′|| · w(e′)) (10)

In Eq.(8), adding e ∈ Ea allows three join operations
corresponding to e and e′ ∈ triEdges(e) to be processed
without shuffle by changing hub(e) to the Part type, when e
includes hub(e). In Eq.(9), adding e ∈ Er allows only the
join operation corresponding to e to be processed without
shuffle. In Eq.(10), adding e ∈ Et allows the join operations
corresponding to e′ ∈ triEdges(e) to be processed without
shuffle. We note that e is not considered as a benefit in Eq.(10)
since it is not an actual edge in a join graph. However, in case
of SD join graph, the join operations corresponding to e can

exist in the query workload, and so, the edge e itself can be
beneficial.

For example, we assume that six tables exist, R, S, T , X , Y ,
and Z, as shown in Figure 4. Then, in the figure, the red edges
are the targets of benefit(e1 ∈ Ea) in Eq.(8), the orange edge
is the target of benefit(e2 ∈ Er) in Eq.(9), and the purple
edges are the targets of benefit(e3 ∈ Et) in Eq.(10).

R[i] X[m]

S[j] Y[n]

T[k]

benefit(e
1

∈ E
a

)

Z[l]

benefit(e
2

∈ E
r

)

benefit(e
3

∈ E
t

)

Fig. 4. Examples of three kinds of benefit(e).

We present the GPT algorithm in Algorithm 1. Given a
join graph G and the parameter κ, it produces a PG that can
improve query performance largely while increasing DR only
slightly. For brevity, we denote the Part-tables and Rep-tables
of a join graph G as VPart and VRep, respectively (VPart ∪
VRep = V).

Algorithm 1 GPT: Graph-based database ParTitioning
Input: G = {V,E,w, l}, // undirected multi-graph

κ // max # of partitioning columns per table
Variable: benefitQ // max-priority queue of 〈benefit(e), e〉
Output: PG = {V,E} // partitioned graph (subgraph of G)

1: // Step1: initialization
2: split V into VPart and VRep; // according to Eq.(3)
3: add VPart to PG.V ;
4: Ea←{e|e=(R.i, S.j)∈E ∧R 6=S ∧R∈VPart ∧ S∈VPart};
5: Er←{e|e=(R.i, S.j)∈E ∧R 6=S ∧R∈VPart ∧ S∈VRep};
6: Et←{e|e is an indirect join edge };

7: // Step2: building an initial benefitQ
8: for each e ∈ Ea ∪ Er ∪ Et do
9: benefitQ.insert(〈benefit(e), e〉);

10: end for

11: // Step3: adding edges and vertices to PG
12: while benefitQ 6= ∅ do
13: 〈benefit, e〉 ← benefitQ.extractMax();
14: if (|C(R)| < κ) ∧ (|C(S)| < κ) s.t. (R,S) ∈ e then
15: add hub(e) to PG.V ;
16: add e to PG.E;
17: add triEdges(e) to PG.E;
18: benefitQ.updateBenefit(adj(e));
19: end if
20: end while
21: return PG;

In the initialization step (Lines 2-6), GPT sets VPart to the
initial PG.V and classifies E into Ea, Er, and Et. Then, GPT
builds a max-priority queue benefitQ that sorts and maintains
all the edges by their benefit(e). In the main step (Lines 12-
20), GPT extracts the edge e with the highest benefit from
benefitQ and adds it to PG. Then, we check the κ constraint
for the two end tables of e and add it to PG only when the
constraint is satisfied. Here, if the edge e has Hub-tables as in
Eq.(4), GPT also adds both hub(e) and triEdges(e) to PG.
We note that adding triEdges(e) does not increase DR at all
if an edge e exists. After adding e to PG, GPT identifies the
set of adjacent edges of the two end vertices of e, i.e., adj(e).

Then, if the sizes of two end tables increase as a result of
adding e, GPT updates, especially, decreases the benefits of
adj(e) to reflect the loss of data redundancy. GPT repeats this
main step until benfitQ is empty.
3.5 A Case Study: TPC-DS Benchmark

In this section, we show the partitioning schemes deter-
mined by GPT for the TPC-DS benchmark. In Figure 5,
GPT/SD and GPT/WD are quite similar with each other.
PREF uses different algorithms to determine a partitioning
scheme, depending on whether the input is a schema or a query
workload. On the contrary, GPT uses the same algorithm in
Algorithm 1 to determine the partitioning scheme, regardless
of the input. The join queries in OLAP workloads are typically
derived from foreign key relationships in the corresponding
schema [15], and so, both GPT/SD (using a join graph from
a database schema) and GPT/WD (using that from the query
workload) become similar. Thus, the GPT method might be
useful especially when query workload is not given, which
will be shown in Section 5.3.

itemcustcustitem

item
cust

cust
item

custitemitemcust

itemitem

cust

CSCR

WS

SS

WR

SR

Inv
I

C

(b) GPT/WD(a) GPT/SD

itemdatedateitem

item
date

date
item

dateitemitemdate

itemitem

date

CSCR

WS

SS

WR

SR

Inv
I

D

date

Fig. 5. Partitioning schemes of GPT for TPC-DS (κ = 2).

Both GPT/SD and GPT/WD have the same set of Part-
tables since those Part-tables have large portion in both in
terms of the cost model. However, they have different Hub-
tables due to their different input join graphs. GPT/SD in
Figure 5(a) has the tables I and C as hubs, while GPT/WD
in Figure 5(b) has the tables I and D as hubs. The number
of Rep-tables in GPT is greater than that of PREF. However,
it is not an issue since replicating Rep-tables requires only
a small amount of storage overhead (e.g., 0.2% of the whole
partitioned database when the database size is 1 TB).

Both GPT/SD and GPT/WD include each table only
once (i.e., no table-level duplicates), and also, have no cumu-
lative redundancy that PREF has since they have no parent-
child dependencies. Moreover, the graph-based partitioning
schemes of GPT allow query processing to be performed
without shuffle in most cases even for complex queries in the
TPC-DS benchmark. That is partly due to a lot of indirect
join edges that implicitly exist in the partitioning schemes. In
Figure 5(b), GPT/WD contains 20 edges, and an additional 36
indirect join edges (a total of 56 edges). We omit the indirect
join edges in the figure for simplicity. Instead, we present them
in Table II. A total of 36 indirect join edges exist among the
seven Part-tables and the two Hub-tables, D and I .

4 QUERY PROCESSING

We first propose our HMC partitioning method for co-
partitioning each edge in the partitioning scheme in Sec-
tion 4.1. Then, we present how the scan operator eliminates

TABLE II
LIST OF INDIRECT JOIN EDGES IN GPT/WD (κ = 2).

no. edges no. edges no. edges
1 (CR.item, Inv.item) 2 (CR.date, Inv.date) 3 (Inv.item, SR.item)
4 (CR.item, WS.item) 5 (CR.date, WS.date) 6 (Inv.item, SS.item)
7 (CR.item, SR.item) 8 (CR.date, SR.date) 9 (Inv.item, WR.item)
10 (CR.tem, SS.item) 11 (CR.date, SS.date) 12 (Inv.item, WS.item)
13 (CR.item, WR.item) 14 (CR.date, WR.date) 15 (Inv.date, SR.date)
16 (CS.item, WS.item) 17 (CS.date, WS.date) 18 (Inv.date, SS.date)
19 (CS.item, Inv.item) 20 (CS.date, Inv.date) 21 (Inv.date, WR.date)
22 (CS.item, SR.item) 23 (CS.date, SR.date) 24 (Inv.date, SS.date)
25 (CS.item, SS.item) 26 (CS.date, SS.date) 27 (SR.item, WS.item)
28 (CS.item, WR.item) 29 (CS.date, WR.date) 30 (SR.date, WR.date)
31 (SS.item, WS.item) 32 (SR.item, WR.item) 33 (SR.date, WS.date)
34 (SS.date, WR.date) 35 (SS.item, WR.item) 36 (SS.date, WR.date)

duplicates efficiently in Section 4.2 and discuss the differences
between GPT and PREF in terms of data redundancy and
query performance in Section 4.3.
4.1 HMC Partitioning

In this section, we present our hash-based co-partitioning
method, called HMC, for the edges in PG. We define HMC
partitioning to perform co-partitioning between two tables in
Definition 3. We let t.x be the value of column x of tuple
t ∈ T .

Definition 3: (HMC partitioning) HMC partitioning par-
titions a table T horizontally by hashing the column values
of its partitioning column(s) C(T). We denote the table

partitioned by HMC partitioning as P (T) =
N⋃
i=1

Pi(T), where

Pi(T) is the i-th partition of P (T). For a hash function
h(·) (1 ≤ h(·) ≤ N), a tuple t ∈ T is stored in a set of
partitions {Ph(t.c)(T)|c ∈ C(T)}, where h(t.c) is the hash
value of the column value t.c for the partitioning column
c ∈ C(T).

Since h(·) is applied to each column t.c ∈ C(T) indepen-
dently, a tuple t ∈ T might be duplicated in multiple partitions
when |C(T)| > 1. A tuple t that has null values in some par-
titioning columns (i.e., ∃c ∈ C(T) : t.c = null), is duplicated
in only the partitions {Ph(t.c)(T)|t.c 6= null ∧ c ∈ C(T)}.

Our HMC partitioning method uses bitmap information
called dup in order to eliminate tuple duplicates during
query processing. Tuple duplicates are common in horizon-
tal partitioning methods [12], and thus, an efficient method
for eliminating duplicates is very important. For a partition
Pi(T), we denote a bitmap vector of length |C(T)| for a
tuple t ∈ Pi(T) as dup(Pi(T))[t]. In a bitmap table or a
bitmap vector, 0 indicates a duplication, while 1 indicates no
duplication. The content of dup bitmaps for a tuple t ∈ T
can be determined during the data loading of T . We let
C(T) = {c1, . . . , cm}, where m = |C(T)|. For a tuple t ∈ T
copied to a partition Pi(T), the dup(Pi(T))[t] bitmap vector
is determined as [b(1), . . . , b(k), . . . , b(m)], where b(k) = 1 if
h(t.ck) = i, but b(k) = 0, otherwise. We let the set of partition
IDs where a tuple t ∈ T is duplicated be {p1, . . . , pn}. Then,
n bitmap vectors exist for a tuple t across partitions, where
n ≤ |C(T)|. The sum of the 1s in these bitmap vectors is equal
to |C(T)|. In a certain dup(Pi(T))[t], there might be more
than two 1s, when two or more column values of partitioning
columns have the same hash value h(·). When |C(T)| = 1,
we do not need dup bitmaps for T since only 1s exist in the
bitmaps, that is, there are no duplicates.

Figure 6 shows an example of HMC partitioning for two
tables R and S, where N = 3. The columns used for

partitioning are shown in black. Table S has no dup bitmaps
since it has only a single partitioning column. The first tuple
of R, (1, 3, 5), is copied to both partitions P1(R) and P3(R),
where the bitmap vectors in P1(R) and P3(R) are (1, 0) and
(0, 1), respectively. The second tuple (2, 5, 7) is copied only
to partition P2(R), where its bitmap vector is (1, 1).

R[1]R[2]R[3]

1 3 5

2 5 7

3 5 9

4 1 2

1 3 5

4 1 2

2 5 7

3 5 9

R[1]R[2]R[3]

1 3 5

3 5 9

(1,0)

(1,1)

(1,1)

(0,1)

(0,1)

(1,0)

)

dup

S[1]

1

2

3

S[2]

5

3

2

1

2

S[1]

3

5

3

S[2]

2

)

Fig. 6. Example of HMC partitioning (N = 3).

When storing each partition Pi(T) of T , we use the concept
of subpartition to efficiently eliminate duplicates in terms of
disk I/O. We can divide Pi(T) into multiple disjoint subpar-
titions based on its bitmap information dup(Pi(T)). When
|C(T)| = n, the number of possible bitmap vectors becomes
2n. For a given table, the number of possible dup bitmap
vectors is limited since the number of possible partitioning
columns is also limited. For example, if |C(T)| = 2, the
possible bitmap vectors are {00, 01, 10, 11} in binary strings.
We create a subpartition for each distinct bitmap vector and
store the tuples having the same dup bitmap vector in the
same subpartition. Here, we note that GPT does not need
to store dup bitmap vectors at all, since each subpartition
already represents a unique bitmap vector for the tuples in
the subpartition. We denote such a bitmap vector by bitV . As
with dup, the length of bitV is |C(T)|, and we denote bitV
for a subpartition s ∈ Pi(T) as bitV (Pi(T))[s].

Figure 7 shows an example of subpartitions using the same
table R used in Figure 6. We assume N = 3 and |C(R)| = 2.
Then, a total of 3×22 = 12 subpartitions are created for R. For
example, a tuple (1, 3, 5) is stored in subpartition 2 of P3(R)
and subpartition 3 of P1(R). The tuple (2, 5, 7) is stored only
in subpartition 4 of P2(R) since its bitmap vector is (1, 1),
and its hash value is 2. Here, the bitV of subpartition 4 is
(1, 1).

bitV = (0, 0) bitV = (0, 1) bitV = (1, 0) bitV = (1, 1)

Fig. 7. Example of subpartitions (N = 3).

4.2 Duplicate elimination

In this section, we present how to eliminate tuple duplicates
to ensure the correctness of query results. If SQL queries
are executed on partitioned tables, it is essential to eliminate
tuple duplicates from the query results across partitions for
correctness. Existing methods [12] usually rewrite the query

plan by adding repartitioning operations, to eliminate dupli-
cates. That approach is a kind of lazy elimination, since
some tuple duplicates are carried through the pipeline of plan
in each machine, and eliminated after shuffling via network
communication. Carrying these unnecessary duplicates with
repartitioning operations can cause extra query processing
overhead.

The concept of subpartition presented in Section 4.1 allows
us to eliminate duplicate tuples without carrying unnecessary
duplicates and repartitioning operations in most cases. Intu-
itively, we can selectively access the subpartitions that are not
determined as duplicates when reading a partition Pi(T) from
storage without false negatives and false positives. In detail,
we read only the subpartitions of Pi(T) corresponding to the
partitioning columns of T relevant to a given query. Since
the scan operator is a low-end operation, there is no need to
rewrite a query plan in principle, but just need to change the
scan operator so as to access to such subpartitions.

We explain how to make the scan operator be aware of the
bitmap information for the following two cases : (1) scanning
a table irrelevant to a join and (2) scanning a table relevant to
a join.

4.2.1 Scanning a Table Irrelevant to a Join (Single-Scan
Mode): If a table T does not involve join operations with other
tables, we can perform duplicate elimination by checking any
particular bitmap column of bitV in each partition Pi(T). We
denote the i-th bitmap column bitV as bitV [·][i]. Although
we can use any i-th bitmap column for 1 ≤ i ≤ C(T) for
duplicate elimination, we just use the first bitmap column for
simplicity. Then, for a subpartition s ∈ Pi(T), bitV [s][1] = 1
indicates all tuples in the subpartition s are original tuples,
and so, we read them from the subpartition s. In contrast,
bitV [s][1] = 0 indicates that all tuples in the subpartition s
are duplicated tuples, and so, we should not read them.

For instance, we consider scanning a partitioned table P (R)
in the single-scan mode in Figure 7. We assume that the first
bitmap column of bitV [s] (1 ≤ s ≤ 4) is used for scanning. At
the storage level, the scan operator accesses only subpartitions
3 and 4 in Figure 7. They correspond to the set of tuples in
orange in Figure 6, where no tuple duplicates exist.

4.2.2 Scanning a Table Relevant to a Join (Join Scan
Mode): We assume a join predicate between R and S in a
query Q is (r1 = s1)∧· · ·∧(rk = sk) where a set {ri, . . . , rk}
is a subset of the columns of R, and a set {si, . . . , sk} is
a subset of the columns of S. Then, we let CQ(R) and
CQ(S) be the sets of partitioning columns used in the join
predicate for tables R and S, respectively. That is, CQ(R) =
{ri, . . . , rk} ∩ C(R), and CQ(S) = {si, . . . , sk} ∩ C(S).

Join operation without shuffle: If CQ(R) ∩ CQ(S) 6= ∅,
then it means R and S are co-partitioned with each other, and
so, we can perform join operations without shuffle by using
the co-partitioned column(s), i.e., CQ(R) ∩ CQ(S). The scan
operator for R reads P (R) in a single-scan mode, but checks
the bitmap column bitV (Pi(R)) [·][j] s.t. j ∈ CQ(R)∩CQ(S),
instead of bitV (Pi(R))[·][1]. Likewise, the scan operator
for S also reads P (S) in a single-scan mode by checking
bitV (Pi(S))[·][j] s.t. j ∈ CQ(R)∩CQ(S). Then, in each pair

of partitions 〈Pi(R), Pi(S)〉, neither Pi(R) nor Pi(S) have
duplicate tuples and are already co-partitioned on column j,
and thus, do not require shuffle during a join without false
negatives and false positives. The remaining part of the join
predicate, (r1 = s1)∧· · ·∧ (rk = sk) except (rj = sj) can be
checked on the tuple pairs resulting from the join operation
within each partition.

For instance, we consider a join between two partitioned ta-
bles P (R) and P (S) in Figure 6. We assume the join condition
is R[2] = S[1]. Then, CQ(R) = R[2] and CQ(S) = S[1], and
CQ(R) ∩ CQ(S) = R[2] = S[1] under the join condition.
In this join scan mode, the scan operator for P (R) uses
the second bitmap column of bitV (Pi(R)), that is, accesses
subpartitions 2 and 4 in Figure 7. The scan operator for P (S)
only scans Pi(S) (1 ≤ i ≤ 3) since there are no bitV bitmaps,
i.e., no subpartitions. Then, the two tuples in the bold boxes
of P (R) are successfully joined with the tuple of P (S).

Join operation with shuffle: If CQ(R) ∩ CQ(S) = ∅, then
it means R and S are not co-partitioned with each other, and
so, a repartitioning operation is unavoidable. This case is rare
under GPT method since a lot of triangles and indirect join
edges in GPT’s partitioning scheme tend to cover a given query
join graph. The scan operator for R just reads P (R) in the
single-scan mode described above. Likewise, the scan operator
for S also reads P (S) in the single-scan mode. We note that no
duplicates of tuples are read from R and S. Then, the standard
repartitioning operation performs join operation between R
and S, and only a minimal number of tuples are shuffled as
in an unpartitioned database. There is no need to eliminate
duplicates during the join.

4.3 Comparison Analysis with PREF

In terms of data redundancy (DR), the DR of GPT increases
proportionally with the parameter κ since each table can have
up to κ partitioning columns, and the size of each table
increases up to κ times under the HMC partitioning. Here, we
note that the size of whole partitioned database is regardless of
whether the number of partitions N increases, or the schema of
database becomes more complex. The number of edges in the
partitioning scheme also does not affect the DR of GPT at all,
since the number of partitioning columns is still limited to κ
no matter how many adjacent edges each table has. In contrast,
the DR of PREF/SD increases proportionally with the number
of partitions N due to its reference partitioning as shown in
Figure 1(a), where a lot of D tuples are duplicated in every
partition, and thus, a lot of WR tuples are also duplicated
in every partition. The DR of PREF/WD tends to increase as
the schema of database becomes more complex, since query
trees are more diverse, and thus, more number of trees are
found after merging. Each occurrence of a vertex (table) in
the forest is stored independently due to its different reference
partitioning. Thus, if a vertex T occurs M times in the forest,
the total size of T in the partitioned database is at least M
times larger than the size of the original T . If N > κ (for
PREF/SD), or the average frequency of a vertex in the forest,
avg(M) is larger than κ (for PREF/WD), GPT can achieve a
better DR than PREF.

In terms of query performance, GPT has the following two
advantages over PREF: (1) scanning smaller amount of data
due to lower DR and (2) not scanning duplicated tuples due to
subpartitioning. For the latter, PREF should read blocks from
disks which contain some duplicated tuples. However, GPT
stores each subpartition separately, each of which consists of
multiple blocks, and reads only the necessary subpartitions
having no duplicated tuples, which is determined by checking
bitV , with respect to a given query. We will show the effects
of (1) and (2) in Section 5.3.

5 EXPERIMENTAL EVALUATION

In this section, we present the experimental results in
three parts. First, we compare GPT with the state-of-the-
art partitioning method PREF [12] to prove that GPT has
both a lower data redundancy and a shorter data loading
time than does PREF. Here, we evaluate GPT and PREF
for both schema-driven (SD) and workload-driven (WD) ap-
proaches, while varying the number of partitions and the scale
of database. Second, we compare the query performance using
the database partitioned by GPT with that by PREF, in order
to prove that the graph-based partitioning of GPT outperforms
the tree-based partitioning of PREF. Third, we evaluate the
query performance while varying the κ parameter in order to
show its characteristics.

5.1 Experimental Setup

Datasets/queries: For experiments using SQL queries, we
use three different benchmarks: TPC-DS [16], IMDB [17],
and BioWarehouse [14]. The first benchmark, TPC-DS [16],
is widely used to evaluate the performance of OLAP queries
running on parallel database systems. The size of the TPC-
DS database is controlled by the scale factor (SF) parameter.
SF=10 generates a database of approximately 10 GB, and
SF=1000 generates a database of approximately 1000 GB,
which are the typical scales used in the TPC-DS benchmark.
Evaluating the query performance for complex large join
operations over a partitioned database can directly reveal the
efficiency of a partitioning scheme. Thus, we use the TPC-DS
queries that contain multiple join operations, and at least one
among them uses a large fact table as an operand by following
the criteria in [18], which are a total of 20 queries. The second
benchmark, The Internet Movie DataBase (IMDB)1, contains
detailed information related to movies which contains a total
of 21 tables and 6.4 GB data in text format2. The schema of
IMDB is less complex than that of TPC-DS. To evaluate query
performance, we use 20 queries provided by the authors in [17]
which contain two large tables (cast info and movie info)
and more than eight join conditions. The third benchmark,
BioWarehouse3, is a collection of heterogeneous bioinformatic
datasets such as GenBank and NCBI Taxonomy. It contains
43 tables and 18.4 GB data. The schema of BioWarehouse
is more complex than that of TPC-DS. To evaluate query
performance, we use five queries provided by the authors
in [14]. We implemented all the queries on top of Hadoop

1http://www.imdb.com
2ftp://ftp.fu-berlin.de/pub/misc/movies/database/
3http://biowarehouse.ai.sri.com

0

1

2

3

4

5

6

SF=25 SF=50 SF=100

D
at

a
re

du
nd

an
cy

Scale of dataset (N=50)

PREF/SD
PREF/WD
GPT/SD
GPT/WD

(a) Changing scale of dataset

0

2

4

6

8

10

12

N=25 N=50 N=100

D
at

a
re

du
nd

an
cy

partitions (SF=100)

PREF/SD
PREF/WD
GPT/SD
GPT/WD

(b) Changing # partitions

83
GB

59
GB

42
GB

43
GB

131
GB

173
GB

88
GB

578
GB

374
GB

191
GB

86
GB

210
GB

347
GB

356
GB

184
GB

196
GB

598
GB

375
GB

191
GB

210
GB 201

GB

233
GB

402
GB

1100
GB

Fig. 8. Data redundancy of PREF and GPT.

and used κ = 2 for all the experiments related to GPT in
default.

H/W setting: We conduct all the experiments on the same
cluster of eleven machines (one master and 10 workers) in
default. For the scalability experiments, we use a cluster of
21 machines (one master and 20 workers). Each machine is
equipped with a six-core CPU, 32 GB memory, and two types
of secondary storage (4 TB HDD and 1.2 TB PCI-E SSD).
They are connected with 1 Gbps interconnection in default.

S/W setting: We use HDFS in Apache Hadoop 2.4.1 to
store the datasets for all systems. For the query processing of
PREF and GPT, we use the MapReduce framework in Apache
Hadoop 2.4.1. We assign 6 GB memory for each map and
reduce task such that up to five concurrent map/reduce tasks
can be executed. To guarantee the data locality of the blocks
of the same partition, we apply the custom block placement
policy of HDFS as used in [19]. To obtain the partitioning
schemes of PREF, we use the author’s implementation4.

5.2 Data Redundancy and Loading for TPC-DS

In this section, we evaluate the space overhead of both
GPT and PREF by measuring their data redundancy (DR) with
Eq.(7). Figure 8 shows the DR values of databases partitioned
by GPT and PREF while changing the scale of database and
the number of partitions. As Figure 8 shows, our GPT method
significantly outperforms the PREF method in both the SD and
WD approaches in all cases.

We note that PREF results in a low DR for a relatively
simple database schema such as TPC-H as reported in [12], but
it results in a very high DR for relatively complex and more
realistic database schema such as TPC-DS. In particular, the
data redundancy of PREF/SD increases drastically as the scale
of database or the number of partitions increases due to the
phenomenon of cumulative redundancy explained in Section 2.
Under PREF/WD, the data redundancy does not increase since
each tree is too small to incur cumulative redundancy, and only
table-level duplicates exist among the multiple trees. However,
it is much higher than that of GPT/WD due to its table-
level duplicates. We note that the data redundancy of GPT
is fairly stable regardless of both the scale of database and the
number of partitions, since it mainly depends on the number
of partitioning columns (κ). As a database schema becomes
more complex, i.e., snowstorm schema [20], with hundreds of
tables, we would expect the gap between GPT and PREF to
become wider.

We also evaluate the performance of database bulk loading
of GPT and PREF. Figure 9 shows the elapsed times of bulk

4https://code.google.com/archive/p/xdb/

loading while changing the scales of database and the number
of partitions. In the figure, our GPT method significantly out-
performs the PREF method in both the SD and WD approaches
for all cases. These results are mainly due to data redundancy
shown in Figure 8. In more detail, in Figure 9(a), the loading
times of both PREF and GPT increase proportionally to the
scales of database since the sizes of the partitioned databases
increase. In Figure 9(b), the loading times of GPT remain
fairly stable as the number of partitions increases since the
sizes of the partitioned databases remain the same.

620
879

2170

1336

2069

3696

490 692

1290

472
786

1446

0

1000

2000

3000

4000

SF=25 SF=50 SF=100

El
ap

se
d

tim
e

(s
ec

.)

Scale of dataset (N=10)

PREF/SD
PREF/WD
GPT/SD
GPT/WD

(a) Changing scale of dataset

4565

7811

14499

4453
5344

7422

1624
1690

1715
1648

1668
1788

0

4000

8000

12000

16000

N=25 N=50 N=100

El
ap

se
d

tim
e

(s
ec

.)

partitions (SF=100)

PREF/SD
PREF/WD
GPT/SD
GPT/WD

(b) Changing # partitions

Fig. 9. Elapsed times of bulk loading of PREF and GPT.

5.3 Query Performance for TPC-DS

PREF vs. GPT: Figure 10 shows the query performance on
the databases partitioned by PREF/SD, PREF/WD, GPT/SD,
and GPT/WD for 20 TPC-DS queries. In this experiment, we
use SF=1000 for TPC-DS and set N = 10. In Figure 10(a),
GPT/SD significantly outperforms PREF/SD on most of the
queries, although its data redundancy is much lower than that
of PREF. In this figure, we note that Y-axis in this figure is log-
scale. For some queries, the large sizes of PREF-partitioned
tables tend to degrade the performance of query processing.
For example, the two fact tables, Inv and WR, in Figure 1(a)
are almost fully duplicated in every partition. Thus, the Q85
query which includes join operation between two fact tables,
WS and WR, requires a large amount of I/O to scan the table
WR, which severely degrades the query performance as shown
in Figure 10(a). Compared to PREF/SD, GPT/SD improves the
performance for the Q85 query 122 times.

In Figure 10(b), GPT/WD still outperforms PREF/WD for
most of queries, despite its lower data redundancy (i.e., using
smaller storage space). In Figure 10(c), GPT/WD improves the
performance of PREF/WD by 48%. However, in that result, the
DR of GPT/WD is only 0.92, while that of PREF/WD is 2.16.
As a result, GPT/WD is 48% faster and its storage overhead
is 2.35 smaller than PREF/WD. For some queries, the tree-
based partitioning scheme of PREF/WD tends to degrade the
performance largely due to shuffle during joins. For example,
the Q17 query mentioned in Section 2 belongs to that case.

As we shown in Figure 10(c), the gap in query performance
between PREF/SD and PREF/WD is huge, whereas the per-
formance gap between GPT/SD and GPT/WD is negligible.
Query performance tends to depend heavily on the partitioning
scheme since the partitioning scheme represents all possible
opportunities for join operations without shuffle in general.
PREF/SD and PREF/WD result in quite different with each
other in Figures 1(a) and 2(c), while GPT/SD and GPT/WD
are very similar with each other in Figure 5. These results
mean that the GPT method can be very useful especially when

query workload is not available. In fact, GPT/SD outperforms
PREF/SD by approximately nine times in Figure 10(c). We
omit GPT/SD in the following experiments hereafter, if it is
not necessary.

Scalability: Figure 10(d) shows the elapsed times for pro-
cessing 20 TPC-DS queries while varying the number of
machines. For this experiment, we use SF=1000 of TPC-DS
and partition the database using GPT/WD. We set the number
of partitions N to the number of machines. The result shows
that the performance of GPT is quite scalable in terms of
the number of machines. In GPT, most part of the queries
are processed without shuffle, i.e., in a truly shared-nothing
manner. In addition, the DR of the partitioned database is
not affected by the number of machines, but only affected by
κ. That means the amount of data to be processed on each
machine decreases as the number of machines increases. As
a result, the performance of GPT should be quite scalable in
terms of the number of machines used.

Performance breakdown: Figure 10(e) shows the perfor-
mance breakdown of our proposed method using three queries
Q17, Q29, and Q85. There are three possible configurations
based on two major techniques in the paper: GPT partitioning
and subpartitioning. The major performance improvement
comes from GPT partitioning, since it allows most of join
operations to be processed without shuffle. Subpartitioning
further improves the performance by 1.26-1.69 times, since
it avoids scanning duplicated tuples.

5.4 Results for IMDB and BioWarehouse
Figure 11 shows the partitioning schemes of GPT/WD (κ =

2) for IMDB and BioWarehouse. As in TPC-DS, the GPT
method can find a single graph that includes some hub tables
for each benchmark. Compared with Figure 5(b), Figure 11(a)
is small due to the simpler IMDB schema, while Figure 11(b)
is large due to the more complex BioWarehouse schema.

Figure 12 shows the comparison results between GPT/WD
and PREF/WD in terms of data redundancy and query perfor-
mance for two benchmarks. GPT/WD outperforms PREF/WD
in terms of both data redundancy and query performance.
In Figure 12(a), DR of PREF/WD for IMDB is quite large
due to severe table-level duplicates from lots of trees (i.e.,
10) and tuple-level duplicates from many FK-FK relationships
between parent and child tables. In Figure 12(b), we use the
sums of elapsed times to evaluate query performance, as in
Figure 12(b). We note that the gaps between PREF/WD and
GPT/WD for IMDB and BioWarehouse are larger than that for
TPC-DS. This is because the queries in IMDB and BioWare-
house are more complex (e.g., contain more join conditions)
than those in TPC-DS.

5.5 Characteristics of GPT

In this section, we evaluate the data redundancy and query
performance of GPT while varying κ. Figure 13 shows the
partitioning schemes of GPT/SD when κ = 1 and κ = 3. Each
table has only a single partitioning column in Figure 13(a),
whereas each table has up to three partitioning columns in
Figure 13(b). Only a single Hub-table appears in Figure 13(a),
whereas there are three Hub-tables in Figure 13(b) due to the
increased number of partitioning columns.

192
478

2609

563
194

3665

214 311
234

665
189 195

1457 1177

173

1618

228

1634

18447

725

156 174 234 235 171
306

157 161
292

154 163 156
241 243

149
289

163 153 151 170
100

1000

10000

100000

Q3 Q7 Q17 Q25 Q27 Q29 Q42 Q43 Q48 Q50 Q52 Q55 Q58 Q71 Q73 Q76 Q79 Q82 Q85 Q93

El
ap

se
d

tim
e

(s
ec

.)

Queries

PREF/SD GPT/SD

(a) Comparison results for schema-driven approach(Y-axis is log-scale)

198
209

646

475

201

582

200
308 241

183 191 194
251

281
164 282

374

171
149

210
153 172

219 221
164

251
150 146

215
154 152 155

233 232
149

285

185
148

154
169

0

250

500

750

Q3 Q7 Q17 Q25 Q27 Q29 Q42 Q43 Q48 Q50 Q52 Q55 Q58 Q71 Q73 Q76 Q79 Q82 Q85 Q93

El
ap

se
d

tim
e

(s
ec

.)

Queries

PREF/WD GPT/WD

(b) Comparison results for workload-driven approach

34968

5510 3876 3707

0

10000

20000

30000

40000

Partitioning scheme

To
ta

l e
la

ps
ed

 tim
e

(s
ec

.) PREF/SD
PREF/WD
GPT/SD
GPT/WD

(c) Sums of elapsed times

7792

3707
2500

1873

0

2000

4000

6000

8000

5 10 15 20

To
ta

l e
la

ps
ed

 tim
e

(s
ec

.)

machines

(d) Scalability

0

1000

2000

3000

El
ap

se
d

tim
e

(s
ec

.)

GPT partitioning X O O X O O X O O
Subpartitioning X X O X X O X X O

TPC-DS Q17 TPC-DS Q29 TPC-DS Q85

(e) Performance breakdown

2595

219

2606

251

774

154
370 397 194

Fig. 10. (a)-(c) Query performance of PREF and GPT in elapsed times; (d) scalability of GPT; (e) performance breakdown while varying optimization techniques.

MK
mov_id mov_id comp_id

MC

id id

id

id

mov_id

mov_id

p_id mov_id p_id

CN

PI

CIAN

MI

MI_idx

P_id BS_id DS_id O_id O_id

T N

id DS_id
BS_id

id
G_id

G_id

id DS_id id DS_id DS_id id

DS_id O_id

id id DS_id id

O_id

O_id

T_id

Protein Feature Term

RT
C

CtoO

CR

STCTSBStoP

BStoBSS

BStoG

GtoP

Gene

BioSource

DS

Entry

(a) IMDB (𝜅 = 2) (b) BioWarehouse (𝜅 = 2)

O_id
C_id

Fig. 11. Partitioning schemes of GPT/WD for IMDB and BioWarehouse.

4398

1403

3817

2447

1024

219
0

1000

2000

3000

4000

5000

IMDB TPC-DS BioWarehouse

To
ta

l e
la

ps
ed

 tim
e

(s
ec

.)

Dataset

PREF/WD
GPT/WD

0

4

8

12

16

IMDB TPC-DS BioWarehouse

D
at

a
re

du
nd

an
cy

Dataset

PREF/WD
GPT/WD

(a) Data redundancy (b) Query performance

104 GB

32 GB210 GB

375 GB

12 GB

110 GB

Fig. 12. Comparison using IMDB, TPC-DS (SF=100) and BioWarehouse.

Figure 14(a) shows the data redundancy of GPT/SD and
GPT/WD when using TPC-DS with SF=1000. As explained in
Section 3.4, DR increases proportionally to κ. At κ = 1, there
is no redundancy in Part-tables, but DR is non-zero due to
the Rep-tables. At κ = 3, the theoretical maximum DR value
is 2, but actual DR values are less than 2 due to correlations
among the partitioning columns. Figure 14(b) shows the query
performance of GPT/WD under a wide range of H/W settings
while varying κ. Here, we use TPC-DS with SF=1000. Among
three κ values, κ = 2 shows the best query performance with
only a small DR (less than 1) for all H/W settings, which
is coincident with the explanation in Section 3.4. A lower
κ value (i.e., κ = 1) can result in worse performance due
to the repartitioning overhead, while a higher κ value (i.e.,
κ = 3) can results in worse performance due to storage
overhead. We note that using faster storage, i.e., PCI-E SSD,
reduces the performance gaps among different κ values since
it reduces both the storage overhead and read/write overhead
of intermediate data during repartitioning. Figure 14(c) shows
the query performance of GPT/WD under a wide range of
H/W settings while varying κ and varying benchmark datasets.
We note that the setting κ = 2 still shows the best overall
performance for the different datasets.

item

item item

item item

item

item

(a) GPT/SD (κ=1)

item item

item item

cust item

item

item

item

custcust

cust

custitem

cust

cust

addraddr

addr

addr

addraddr

addr

C

CA

(b) GPT/SD (κ=3)

Fig. 13. Partitioning schemes of GPT/SD (varying κ).

0

1000

2000

3000

To
ta

l e
la

ps
ed

 tim
e

(s
ec

.)

Dataset

𝜅=1
𝜅=2
𝜅=3

HDD /
1G

HDD /
10G

SSD /
1G

SSD /
10G

16917 16920

4392 4316

11594 11663

3707 3698

16421 16359

3744 3746

0

5000

10000

15000

20000

HDD/1G HDD/10G SSD/1G SSD/10G

To
ta

l e
la

ps
ed

 tim
e

(s
ec

.)

H/W configurations

𝜅=1
𝜅=2
𝜅=3

0.04

0.82

1.57

0.05

0.92

1.67

0

0.5

1

1.5

2

κ=1 κ=2 κ=3

D
at

a
re

du
nd

an
cy

partitioning columns (κ)

GPT/SD

GPT/WD

(b) Query performance (TPC-DS, SF=1000)(a) Data redundancy (DR)

HDD /
1G

HDD /
10G

SSD /
1G

SSD /
10G

HDD /
1G

HDD /
10G

SSD /
1G

SSD /
10G

(c) Query Performance (BioWarehouse, TPC-DS SF=100, IMDB)

Fig. 14. Data redundancy and query performance of GPT (varying κ).

6 RELATED WORK

Database Partitioning Scheme for OLAP: The major
performance gain in database partitioning comes from parallel
query processing without repartition operations [12], [21],
[22]. To remove repartition operations, it is essential to decide
the appropriate partitioning columns for tables. The methods
in [10], [9] co-partition the tables by their join columns,
so that join operation between co-partitioned tables can be
processed without shuffle. The REF method in [11] proposed
reference partitioning that considers referential constraints in
the table schema as partitioning predicates. Columns in refer-
ential constraint become the partitioning columns for tables,
and therefore, the tables in the same referential constraint
are co-partitioned. The PREF method in [12] partitions the
tables based on not only referential constraints but also on
join predicates. Although this approach allows the database to

be partitioned by a more number of constraints or predicates
than does the REF method, it also tends to incur more data re-
dundancy. PREF method generates tree-structured partitioning
schemes that have data dependencies between the parent and
child tables. Such partitioning schemes trigger two kinds of
drawbacks: high data redundancy and low query performance.
Our graph-based partitioning schemes solve those drawbacks
of PREF method. There have been proposed skipping-oriented
database partitioning methods [23], [24] which focus on scan-
ning less data during query processing for relatively simple
queries that have few join operations. AdaptDB [25] proposes
an on-line partitioning method that focuses on repartitioning
small portions of data continuously at runtime, but still uses
tree-based partitioning schemes.

Database Partitioning Scheme for OLTP: A number
of studies have been proposed to improve the performance
of OLTP query processing [26], [27], [28], [29], [30]. For
OLTP query processing, it is usually beneficial to use as few
machines as possible for a single query since the amount of
data accessed is usually quite small, and usually many queries
need to be processed. Thus, parallel OLTP systems [26],
[27], [28], [30] try to minimize the number of distributed
transactions for given query workloads. To do that, they
partition the database based on query workloads such that
the overheads of query processing in the partitions is not
skewed, but balanced. To partition a database, they usually
create a graph with a node per tuple and edges between nodes
accessed by the same transaction, and use the existing graph
partitioner (e.g., METIS [31]) to split the graph into multiple
balanced partitions that minimize the number of cross-partition
transactions. The size of the target graph to be partitioned in
these OLTP systems is quite large since it is a tuple-level
graph, whereas that in our GPT is very small since it is a
table-level graph.

7 CONCLUSIONS

In this paper, we have proposed a novel graph-based
database partitioning method called GPT that can improve
query performance largely while using only a small amount
of additional storage space. Different from the state-of-the-
art partitioning method PREF, the GPT method determines
an undirected multigraph rather than a tree or a forest, as a
partitioning scheme. GPT determines the partitioning scheme
in a cost-based manner by considering the trade-off between
data redundancy and the number of opportunities of join
processing without shuffle. The resulting partitioning scheme
contains a lot of explicit or implicit triangles of tables that
can cover a query join graph in many cases, allowing a
query engine to process the join query without performing
repartitioning. Each edge of the undirected multigraph is as-
sumed to be co-partitioned by the proposed HMC partitioning
method with subpartitions. This approach incurs no cumulative
redundancy, and results in both less overhead to eliminate
duplicates and faster initial bulk loading. Through extensive
experiments using three benchmarks including TPC-DS, we
have shown that the database partitioned by GPT has 2.35
times smaller storage overhead than that by the state-of-the
art method PREF, and at the same time, query performance
using the database partitioned by GPT is 48% faster than that

by PREF due to fewer join operations requiring shuffles.
Acknowledgments This work was partly supported by

Institute for Information communications Technology Pro-
motion(IITP) grant funded by the Korea government(MSIT)
(No. R0190-15-2012, High Performance Big Data Analytics
Platform Performance Acceleration Technologies Develop-
ment), the DGIST RD Program of the Ministry of Science
and ICT (17-BD-0404), and Basic Science Research Program
through the National Research Foundation of Korea(NRF)
funded by the Ministry of Science, ICT and Future Planning
(2017R1E1A1A01077630).

REFERENCES

[1] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng,
T. Kaftan, M. J. Franklin, A. Ghodsi et al., “Spark sql: Relational data processing
in spark,” in SIGMOD, 2015.

[2] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching, A. Choi, J. Erickson,
M. Grund, D. Hecht, M. Jacobs et al., “Impala: A modern, open-source sql engine
for hadoop,” in CIDR, 2015.

[3] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and W. Lehner, “Sap
hana database: data management for modern business applications,” in SIGMOD
Record, 2012.

[4] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver, L. Doshi, and C. Bear,
“The vertica analytic database: C-store 7 years later,” in VLDB, 2012.

[5] F. M. Waas, “Beyond conventional data warehousing: massively parallel data
processing with greenplum database,” in BIRTE (Informal Proceedings), 2008.

[6] X. Zhang, L. Chen, and M. Wang, “Efficient multi-way theta-join processing using
mapreduce,” in VLDB, 2012.

[7] W. Rödiger, T. Mühlbauer, A. Kemper, and T. Neumann, “High-speed query
processing over high-speed networks,” in VLDB, 2015.

[8] S. Chu, M. Balazinska, and D. Suciu, “From theory to practice: Efficient join
query evaluation in a parallel database system,” in SIGMOD, 2015.

[9] S. Fushimi, M. Kitsuregawa, and H. Tanaka, “An overview of the system software
of a parallel relational database machine grace,” in VLDB, 1986.

[10] D. J. DeWitt, S. Ghandeharizadeh, D. Schneider, A. Bricker, H.-I. Hsiao, R. Ras-
mussen et al., “The gamma database machine project,” in TKDE, 1990.

[11] G. Eadon, E. I. Chong, S. Shankar, A. Raghavan, J. Srinivasan, and S. Das,
“Supporting table partitioning by reference in oracle,” in SIGMOD, 2008.

[12] E. Zamanian, C. Binnig, and A. Salama, “Locality-aware partitioning in parallel
database systems,” in SIGMOD, 2015.

[13] C. Loboz, S. Smyl, and S. Nath, “Datagarage: Warehousing massive performance
data on commodity servers,” in VLDB, 2010.

[14] T. J. Lee, Y. Pouliot, V. Wagner, P. Gupta, D. W. Stringer-Calvert, J. D. Tenenbaum,
and P. D. Karp, “Biowarehouse: a bioinformatics database warehouse toolkit,”
BMC bioinformatics, vol. 7, no. 1, 2006.

[15] A. Weininger, “Efficient execution of joins in a star schema,” in SIGMOD, 2002.
[16] R. O. Nambiar and M. Poess, “The making of tpc-ds,” in VLDB, 2006.
[17] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann, “How

good are query optimizers, really?” in VLDB, 2015.
[18] H. Ma, B. Shao, Y. Xiao, L. J. Chen, and H. Wang, “G-sql: fast query processing

via graph exploration,” in VLDB, 2016.
[19] M. Y. Eltabakh, Y. Tian, F. Özcan, R. Gemulla, A. Krettek, and J. McPherson,

“Cohadoop: flexible data placement and its exploitation in hadoop,” in VLDB,
2011.

[20] R. Ahmed, R. Sen, M. Poess, and S. Chakkappen, “Of snowstorms and bushy
trees,” in VLDB, 2014.

[21] J. Rao, C. Zhang, N. Megiddo, and G. Lohman, “Automating physical database
design in a parallel database,” in SIGMOD, 2002.

[22] D. DeWitt and J. Gray, “Parallel database systems: the future of high performance
database systems,” in CACM, 1992.

[23] L. Sun, M. J. Franklin, J. Wang, and E. Wu, “Skipping-oriented partitioning for
columnar layouts,” in VLDB, 2016.

[24] S. Nishimura and H. Yokota, “Quilts: Multidimensional data partitioning frame-
work based on query-aware and skew-tolerant space-filling curves,” in SIGMOD,
2017.

[25] Y. Lu, A. Shanbhag, A. Jindal, and S. Madden, “Adaptdb: adaptive partitioning
for distributed joins,” in VLDB, 2017.

[26] C. Curino, E. Jones, Y. Zhang, and S. Madden, “Schism: a workload-driven
approach to database replication and partitioning,” in VLDB, 2010.

[27] A. Pavlo, C. Curino, and S. Zdonik, “Skew-aware automatic database partitioning
in shared-nothing, parallel oltp systems,” in SIGMOD, 2012.

[28] A. Quamar, K. A. Kumar, and A. Deshpande, “Sword: scalable workload-aware
data placement for transactional workloads,” in EDBT, 2013.

[29] A. Turcu, R. Palmieri, B. Ravindran, and S. Hirve, “Automated data partitioning
for highly scalable and strongly consistent transactions,” in TPDS, 2016.

[30] M. Serafini, R. Taft, A. J. Elmore, A. Pavlo, A. Aboulnaga, and M. Stonebraker,
“Clay: fine-grained adaptive partitioning for general database schemas,” in VLDB,
2016.

[31] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for
partitioning irregular graphs,” SIAM Journal on scientific Computing, vol. 20, no. 1,
1998.

