
DistME: A Fast and Elastic Distributed Matrix
Computation Engine using GPUs

Donghyoung Han
DGIST, Republic of Korea

icedrak@dgist.ac.kr

Yoon-Min Nam
DGIST, Republic of Korea
ronymin@dgist.ac.kr

Jihye Lee
DGIST, Republic of Korea

jh_lee@dgist.ac.kr

Kyongseok Park
KISTI, Republic of Korea

gspark@kisti.re.kr

Hyunwoo Kim
KISTI, Republic of Korea

pardess@kisti.re.kr

Min-Soo Kim∗

DGIST, Republic of Korea
mskim@dgist.ac.kr

ABSTRACT
Matrix computation, in particular, matrix multiplication is
time-consuming, but essentially and widely used in a large
number of applications in science and industry. The existing
distributed matrix multiplication methods only focus on ei-
ther low communication cost (i.e., high performance) with
the risk of out of memory or large-scale processing with
high communication overhead. We propose a distributed
elastic matrix multiplication method called CuboidMM that
achieves both high performance and large-scale processing.
We also propose a GPU acceleration method that can be
combined with CuboidMM. CuboidMM partitions matrices
into cuboids for optimizing the network communication cost
with considering memory usage per task, and the GPU ac-
celeration method partitions a cuboid into subcuboids for
optimizing the PCI-E communication cost with consider-
ing GPU memory usage. We implement a fast and elastic
matrix computation engine called DistME by integrating
CuboidMM with GPU acceleration on top of Apache Spark.
Through extensive experiments, we have demonstrated that
CuboidMM and DistME significantly outperform the state-
of-the-art methods and systems, respectively, in terms of
both performance and data size.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00
https://doi.org/10.1145/3299869.3319865

KEYWORDS
Matrix multiplication, Distributed data-parallel system, GPU
computation

ACM Reference Format:
Donghyoung Han, Yoon-Min Nam, Jihye Lee, Kyongseok Park,
Hyunwoo Kim, and Min-Soo Kim. 2019. DistME: A Fast and Elastic
Distributed Matrix Computation Engine using GPUs. In 2019 In-
ternational Conference on Management of Data (SIGMOD ’19), June
30-July 5, 2019, Amsterdam, Netherlands. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3299869.3319865

1 INTRODUCTION
Matrix computation is essentially and widely used in a large
number of applications in various fields such as database,
machine learning, health, music, and games [4]. The appli-
cations in the machine learning field include collaborative
filtering, Cholesky factorization, singular value decompo-
sition (SVD), LU factorization, betweenness centrality, and
deep neural network. As the sizes of real matrix dataset are
growing rapidly, fast and scalable matrix computation sys-
tems have become more important than ever before. For
example, for collaborative filtering, the sizes of the Netflix
competition dataset [41] are 100 million ratings, 480,000
users, and 17,770 items, and those of Facebook’s dataset are
100 billion ratings, more than a billion users, and millions of
items [21].

Matrix computation, in particular, matrix multiplication is
time-consuming due to its high computational complexity of
O(N 3) when input matrices are of N ×N . In order to process
large-scale matrix computation in a fast and scalable way,
a number of distributed matrix computation systemson top
of MapReduce-based frameworks such as SystemML [6, 18],
Marlin [19], Mahout [29], DMac [37], and MatFast [38] have
been proposed.
For large-scale matrices, these systems perform matrix

multiplication as the following three steps: (1) repartition-
ing input matrices among tasks (matrix repartition); (2) per-
forming local matrix multiplication within each task (local

https://doi.org/10.1145/3299869.3319865
https://doi.org/10.1145/3299869.3319865

multiplication); (3) aggregating the intermediate results of
local matrix multiplication by shuffling them (matrix aggre-
gation). For fast matrix multiplication, they usually focus on
reducing the communication overhead occurred in the ma-
trix repartition and aggregation steps since the total number
of low-level multiplication operations is the same regardless
of a method used [37, 38].

For the matrix repartition and aggregation steps, the exist-
ing systems have proposed or used the following three meth-
ods: Broadcast Matrix Multiplication (BMM) [6, 18, 37, 38],
Cross Product-basedMatrixMultiplication (CPMM) [6, 18, 37,
38], and Replication-based Matrix Multiplication (RMM) [6,
18, 26]. The BMM method broadcasts a smaller input matrix
to all tasks, and the CPMM method performs multiple outer
products between both input matrices and aggregates the
results of outer products. Thus, BMM has relatively high
communication overhead in the matrix repartition step, and
CPMM has relatively high communication overhead in the
matrix aggregation step. Both methods are usually faster
than the other method, RMM, but tend to fail for large-scale
matrices due to their excessive memory usage per task. The
RMM method repartitions input matrices into much smaller-
size units called blocks, and so, can process large-scale ma-
trix multiplication without out of memory error. However,
it tends to have much higher communication overhead than
the other methods.

As explained above, the existing systems have drawbacks
of either risk of out of memory due to high memory usage
per task (BMM and CPMM) or degradation of performance
due to high communication cost (RMM). In addition, they
have another drawback of not exploiting hardware accelera-
tion of modern processors (e.g., GPUs) that can significantly
improve the performance of the local multiplication step.
For low-level matrix multiplication, the existing systems in-
cluding SystemML [6, 18], DMac [37], and MatFast [38] use
CPU-based libraries such as LAPACK [1], ATLAS [35], and
Intel MKL [32]. If we could use GPU-based libraries such
as cuBLAS [14] (for dense matrix) and cuSPARSE [27] (for
sparse matrix), the performance of the local multiplication
step would be significantly improved. However, it is non-
trivial to design such a method (or system) since it requires
taking the characteristics of both distributed systems and
GPUs into account.

To alleviate the above drawbacks, we propose a distributed
elastic matrix multiplication method called CuboidMM that
can achieve both low communication cost and low mem-
ory usage per task. The CuboidMM method partitions input
matrices into multiple pieces called cuboids that have the
optimal sizes in terms of communication cost and memory
usage per task. In fact, it is a generalization of the existing
three methods. The optimal size of cuboid varies depending
on the sizes of input matrices and system resources available.

As a result, CuboidMM outperforms all the existing methods,
BMM, CPMM, and RMM, in terms of both the elapsed time
and the maximum sizes of matrices that can be computed
without failure. In addition, we propose a GPU accelera-
tion method of matrix multiplication that can be seamlessly
combined with CuboidMM. It partitions each cuboid into
multiple subcuboids that have the optimal sizes in terms of
both the PCI-E communication cost between main memory
and GPU memory and the GPU memory usage per task.
We implement a fast and elastic matrix computation en-

gine called DistME by integrating our proposed CuboidMM
andGPU accelerationmethod seamlessly on top of Spark [40]
distributed data-parallel framework. DistME improves the
performance of all three steps of distributed matrix multipli-
cation compared with the existing systems, in particular, the
matrix repartition and aggregation steps due to CuboidMM,
and the local multiplication step due to GPU acceleration.
It also can handle not only matrix multiplication, but also a
complex query like matrix factorization. Through extensive
experiments using both real and synthetic data, we have
demonstrated that CuboidMM improves the elapsed time
up to by 3.92 times and reduces the communication cost up
to by 60.39 times compared with the existing methods. We
also have shown that DistME significantly outperforms the
state-of-the-art systems in terms of both performance and
data size that can be processed.

Our major contributions are summarized as follows:

• We propose an elastic method, CuboidMM that can
process distributed matrix multiplication in an optimal
manner in terms of network communication cost and
memory usage per task.
• We propose a GPU acceleration method for the lo-
cal matrix multiplication that can be integrated with
CuboidMM in an optimal manner in terms of PCI-E
communication cost and GPU memory usage per task.
• We implement a matrix engine DistME on top of Spark
that improves the performance of all three steps of
distributed matrix multiplication with CuboidMM and
GPU acceleration.
• Through extensive experiments, we have demonstrated
that CuboidMM improves the performance of the ex-
isting methods up to by 60.39 times, and DistME sig-
nificantly outperforms the state-of-the-art systems.

The rest of this paper is organized as follows. Section 2
reviews the existing methods for distributed matrix multipli-
cation. In Section 3, we present the CuboidMM method for
optimizing the distributed matrix multiplication. In Section 4,
we present the GPU computation method that can be com-
bined with CuboidMM for accelerating matrix multiplication.
Section 5 presents the implementation of DistME briefly, and
Section 6 presents the results of the experimental evaluation.

Table 1: Summary of symbols.

Symbol Description

A, B, C input and output matrices
|A| size of matrix A (number of elements of A)

I , J , K number of blocks on the i-, j-, and k-axis
P , Q , R number of partitions on the i-, j-, and k-axis

P2, Q2, R2 number of subpartitions on the i-,j-,k-axis
Ai,k block of A located at (i,k)
vi, j,k voxel located at (i, j,k)
Dp,q,r cuboid located at (p,q, r)
Sp2,q2,r2 subcuboid located at (p2,q2, r2)

T number of all tasks
Tc number of concurrent tasks per cluster node
M number of cluster nodes

Finally, we discuss related work in Section 7 and conclude
this paper in Section 8.

2 PRELIMINARIES
In this section, we explain the matrix partitioning schemes in
Section 2.1 and the existing distributed matrix multiplication
methods in Section 2.2. We summarize the symbols used in
this paper in Table 1.

2.1 Matrix Partitioning Schemes
To process large-scale matrices efficiently, most of distributed
matrix computation systems represent a matrix as a grid of
fixed-sized blocks and use a block as a basic unit of matrix
computation [6, 8, 18, 19, 31, 37, 38]. Here, a block typically
has the same width and height, i.e., 1000 × 1000. Each block
can be represented either in a dense format or sparse formats
such as Compressed Sparse Column (CSC) and Compressed
Sparse Row (CSR) [15].
In general, distributed matrix computation systems need

to split the matrices into a number of partitions and assign
the partitions to the tasks running on the cores of the cluster
for parallel computation. There are the following represen-
tative partitioning schemes: Row, Column, Hash, and Grid
partitioning schemes. Figure 1 shows an example of parti-
tioning a matrix A of 4 × 4 blocks into four tasks according
to each partitioning scheme, where the blocks of the same
color belong to the same partition. We consider each block
has its own index Ai, j in a matrix A where i is a row index,
and j is a column index, as in Figure 1(a).
• Row/Column partitioning schemes [37, 38] distribute
the blocks in the same row/column block index to the
same task, as shown in Figures 1(a) and (b).
• Hash partitioning scheme [6, 18] determines the task
for each block by using a hash function, as shown in

Figure 1(c). The hash function allows the blocks to be
evenly distributed among the tasks.
• Grid partitioning scheme [9] divides a matrix into a
number of grids of α ×β blocks, where α is the number
of blocks in the row, and β is the number of blocks in
the column. Figure 1(d) shows an example of 2× 2 grid
partitioning of the matrix A.

0 1 2 3

0

1

2

3

(b) Column (c) Hash (d) 𝟐×𝟐 Grid(a) Row

A0,0 A0,1 A0,2 A0,3

A3,0 A3,1 A3,2 A3,3

A2,0 A2,1 A2,2 A2,3

A1,0 A1,1 A1,2 A1,3

Figure 1: Example of partitioning schemes for the ma-
trix A.

The above partitioning schemes divide a matrix into dis-
joint partitions, each of which is copied to a single task for
computation. However, matrix multiplication of A × B re-
quires either A or B to be copied to all tasks, i.e., broadcasted
in many cases, which will be explained in Section 2.2.

2.2 Distributed Matrix Multiplication
In matrix multiplication ofC = A×B, each block ofCi, j (0 ≤
i < I , 0 ≤ j < J) can be computed as in Eq.(1) where the
input matricesA and B have I ×K , K × J blocks, respectively,
and the output matrix C has I × J blocks.

Ci, j =
∑

0≤k<K
Ai,k · Bk, j (1)

The matrix multiplication is often represented as a 3-
dimensional model having i-axis, j-axis, and k-axis where
0 ≤ i < I , 0 ≤ j < J , and 0 ≤ k < K . The ik-plane of the
model indicates the matrix A, the kj-plane of the model the
matrix B, and the ij-plane of the model the matrix C . The ar-
eas ofA,B, andC are I×K blocks,K×J blocks, and I×J blocks,
respectively. Thus, the volume of the model becomes I× J×K
voxels, each of which means a computational unit of matrix
multiplication, i.e., computing an intermediate block ofCi, j by
multiplication between two blocks Ai,k · Bk, j . We denote the
intermediate block, i.e., the result ofAi,k ·Bk, j for a specific k ,
by Ck

i, j . We also denote the index of a specific voxel by vi, j,k
in the model. Figure 2(a) shows a 3-dimensional model for
4×4×4 voxels, where the computation in Eq.(1) corresponds
to an array of voxels on the k-axis, i.e., [vi, j,0, · · · ,vi, j,K−1].
Without loss of generality, distributed matrix multiplica-

tion is performed as the following three steps [19].
• Matrix repartition step: the input matrices are repar-
titioned or broadcasted to the tasks of a distributed
system.

(a) BMM

𝑣",","
𝑖

𝑘

𝑗

(c) RMM

𝐴"," 𝐵),)

(b) CPMM

𝐵*,)
replicate

𝐶),,

replicate

Figure 2: The 3-dimensional model for matrix multi-
plication.

• Local multiplication step: in each task, the input ma-
trix blocks are multiplied to generate the intermediate
blocks of the output matrix.
• Matrix aggregation step: the intermediate blocks are
shuffled to generate the final output matrix (this step
is optional depending on the strategy of the matrix
repartition step).

The existing methods for distributed matrix multiplication
can be categorized into the following three groups depending
on the strategy of the matrix repartition step: Broadcast Ma-
trixMultiplication (BMM) [6, 18, 37, 38], Cross Product-based
MatrixMultiplication (CPMM) [6, 18, 37, 38], and Replication-
based Matrix Multiplication (RMM) [6, 18, 26]. We explain
each method in more detail.

2.2.1 BMM. The matrix repartition step of BMM parti-
tions the input matrix A to each task according to the row
partitioning scheme in Section 2.1 and broadcasting the in-
put matrix B to all the tasks, if the matrix B is smaller than
the matrixA. Figure 2(a) shows the BMMmethod when both
A and B are of 4 × 4 blocks, and there are four tasks. In the
figure, the voxels in different colors indicate the computation
in different tasks. For example, the first task in red takes the
first row of A (i.e., four blocks in red on the ik-plane) and
the entire B (i.e., 16 blocks in red on the kj-plane) as input.
Then, the BMM method performs the local multiplication
step between both inputs and generates four blocksC0,0,C0,1,
C0,2, and C0,3 as output. Each of these four output blocks is
computed according to Eq.(1). These blocks are not interme-
diate blocks, but the final blocks for the output matrixC , and
so, the BMMmethod does not require the matrix aggregation
step.
The BMM method is similar to the broadcast join of a

distributed DBMS [5]. Most of distributed matrix multipli-
cation systems including SystemML [6, 18], DMac [37], and
MatFast [38] use BMM as a default matrix multiplication
method for small matrices. We let the number of tasks be T .
The memory usage per task becomes |A |T + |B | for input and
|C |
T for output. Here, |A| indicates the size of the matrix A in
terms of the number of elements. The communication cost,
i.e., the amount of data transferred via the network, becomes

|A| + T · |B | in the matrix repartition step and zero in the
matrix aggregation step.

2.2.2 CPMM. The matrix repartition step of CPMM par-
titions the input matrix A to each task according to the col-
umn partitioning scheme and partitions the input matrix B
to each task according to the row partitioning scheme. Fig-
ure 2(b) shows the CPMMmethod. For example, the first task
in red takes the first column of A (i.e., A0,0, A1,0, A2,0, and
A3,0) and the first row of B (i.e., B0,0, B0,1, B0,2, and B0,3) as
input. Then, the CPMM method performs the local multipli-
cation step between both inputs, which is actually an outer
product at the block level, and so, generates 16 intermediate
blocks {Ck

i, j |0 ≤ i < 4, 0 ≤ j < 4,k = 0} as output. Since
these blocks are not final blocks of the output matrix C , the
CPMM method performs the matrix aggregation step where
each four of them are copied to the same task among four
tasks.
The CPMM method is used in MatFast [38], DMac [37],

and SystemML [6, 18]. The memory usage per task becomes
|A |
T +

|B |
T for input and |C | at most for output. The commu-

nication cost in the matrix repartition step is |A| + |B |, and
that in the matrix aggregation step is T · |C | at most. The
actual cost of the matrix aggregation step depends on the
sparsity of the intermediate blocks of C generated by the
local multiplication step. The actual cost may be lower than
T · |C |, but most of distributed matrix computation systems
including SystemML [6, 18] and DMac [37] use the worst-
case complexity for estimating the sparsity of intermediate
blocks, and so, we also use the worst-case complexity.

2.2.3 RMM. In the above methods, a task may fail due
to its high memory usage per task, i.e., |A |T + |B | +

|C |
T for

BMM and |A |T +
|B |
T + |C | for CPMM, as the size of either

B or C is very large. Even though we increase the number
of tasks, the problem cannot be solved due to the limit on
the number of tasks in those methods. In principle, the max-
imum number of possible tasks in BMM becomes I when
broadcasting the matrix B, and that in CPMM becomes K .
The RMM method can be used for solving this problem with
more communication cost.
The matrix repartition step of RMM replicates every A’s

blocks J times and every B’s blocks I times and shuffles them
using the index of the corresponding voxel as a key. For ex-
ample, in Figure 2(c), the block A0,0 is replicated J = 4 times
and shuffled as ⟨(i = 0, j = 0,k = 0),A0,0⟩, ⟨(0, 1, 0),A0,0⟩,
⟨(0, 2, 0),A0,0⟩, and ⟨(0, 3, 0),A0,0⟩. In ⟨·, ·⟩, the former indi-
cates a key, and the latter a value. Thus, the RMM method
uses the hash partitioning scheme in Section 2.1 for all the
replicated blocks of A and B. After all replicated blocks of A
and B are shuffled, a task takes a set of A block and B block
pairs having the same key. For example, a task takes a pair

of A0,0 and B0,0 having the same key (0, 0, 0). Then, the task
performs the local multiplication step for each pair of blocks
to generate the intermediate blocks including C0

0,0. In the
matrix aggregation step, the RMM method shuffles these
intermediate blocks such that the ones having the same i
and j indices are gathered for computing Ci, j .

The RMM method is used in SystemML [6, 18] and Spark
MLlib [26] when processing large-scalematrixmultiplication.
The communication cost in the matrix repartition step is
J · |A| + I · |B |, and that in the matrix aggregation step is
K · |C | at most. Different from BMM and CPMM, the RMM
method can distribute the workload to up to I · J · K tasks
since the number of all replicated blocks ofA (or B) is I · J ·K .
Here, the memory usage per task becomes J · |A |

T +
I · |B |
T for

input and K · |C |
T for output.

2.2.4 Comparison. Table 2 summarizes the communica-
tion cost, memory usage per task, and maximum parallelism
of the BMM, CPMM, and RMMmethods. Since the total num-
ber of multiplication operations is the same regardless of
BMM, CPMM, or RMM, the performance of those methods
mainly depends on the communication cost [37, 38]. Thus,
BMM (or CPMM) tends to be faster than RMM due to its
smaller communication cost, as long as |B | (or |C |) fits in
the memory of a task. In contrast, RMM has much better
scalability than BMM and CPMM in terms of the number of
tasks and can process without out of memory even in the
case when |B | (or |C |) cannot fit in the memory of a task. Our
CuboidMM will be explained in Section 3.

3 CUBOID MATRIX MULTIPLICATION
In this section, we propose the Cuboid Matrix Multiplica-
tion (CuboidMM) method that pursues both the high per-
formance of BMM or CPMM and the scalability of RMM
in terms of data size. We present the concept and steps of
CuboidMM method in Section 3.1 and the optimization of
parameters used in CuboidMM in Section 3.2.

3.1 (P ,Q,R)-Cuboid partitioning
The RMM method in Section 2.2.3 achieves good scalability
in terms of the size of the matrix by using the smallest unit in
the 3-dimensional model, i.e., a voxel, as a unit for workload
distribution in the matrix repartition step. The size of a voxel,
i.e., the sum of the sizes of a single block of A, a single block
of B, and a resulting single block of C , is small enough to be
processed in a single task without a lack of memory. Such a
small size, however, causes a large amount of communication
overhead due to the replication of every block of A, B, and
C matrices J , I , and, K times, respectively, where J , I , and K
can be large (e.g., 100,000).

The CuboidMM method conceptually partitions the 3-
dimensionalmodel space intomultiple cuboid-shaped chunks
of voxels such that the size of each cuboid becomes the
biggest one that can fit in the memory of a task. Here, the
size of a cuboid means the sum of the sizes of the blocks ofA,
B, andC in the cuboid. For partitioning, we use three param-
eters P ,Q , and R that mean the number of partitions on the i-
axis, j-axis, andk-axis, respectively. This partitioning scheme
makes a total of P · Q · R cuboids, and so, we denote it by
(P ,Q,R)-cuboid partitioning. In fact, the CuboidMM method
performs the grid partitioning scheme in Section 2.1 for each
of the input matrices A and B. The parameters should satisfy
the condition that 0 < P ≤ I , 0 < Q ≤ J , and 0 < R ≤ K .
Figure 3(a) shows an example of (P = 2,Q = 2,R = 2)-cuboid
partitioning for matrix multiplication where A is of 4 × 8
blocks, B is of 8×6 blocks, andC is of 4×6 blocks. In general,
each cuboid consists of ⌈ IP ⌉ × ⌈

J
Q ⌉ × ⌈

K
R ⌉ voxels. For instance,

a cuboid in Figure 3(a) consists of 2× 3× 4 voxels. We denote
the index of a specific cuboid by Dp,q,r where 0 ≤ p < P ,
0 ≤ q < Q , and 0 ≤ r < R. For instance, the index of the first
cuboid in gray is D0,0,0.

𝑖

𝑘
𝑗

𝐷%,%,%

𝑣%,%,%

(a) (2,2,2)-cuboid partitioning (b) communication sharing

× =

case1:

× =

case3:

× =

case2:

Figure 3: Example of (P ,Q,R)-cuboid partitioning.

The CuboidMM method can significantly reduce the com-
munication cost occurred in the RMM method by sharing
network communication among consecutive voxels in the 3-
dimensional model. Figure 3(b) shows three cases that reduce
the communication cost by using (2, 2, 2)-cuboid partitioning
of Figure 3(a). In case 1, computation of three consecutive
voxels on the j-axis requires replicating each block of A only
once instead of three times, as long as the cuboid is pro-
cessed in a single task. Likewise, in case 2, the computation
of two consecutive voxels on the i-axis requires replicating
each block of B only once instead of two times. Finally, in
case 3, the computation of four consecutive voxels on the
k-axis avoids shuffling four intermediate blocks of C . Thus,
cases 1 and 2 can reduce the communication cost in the ma-
trix repartition step, while case 3 can reduce that in thematrix
aggregation step. More specifically, CuboidMM reduces the
communication cost compared with RMM up to by J

Q times

Table 2: Comparison among matrix multiplication methods (|A| > |B |, P ≤ I , Q ≤ J , and R ≤ K).

methods communication cost memory usage maximum number
matrix repartition matrix aggregation per task of tasks

BMM |A| +T · |B | - |A |
T + |B | +

|C |
T I

CPMM |A| + |B | T · |C | |A |
T +

|B |
T + |C | K

RMM J · |A| + I · |B | K · |C | J · |A |
T +

I · |B |
T +

K · |C |
T I · J · K

CuboidMM Q · |A| + P · |B | R · |C | Q · |A |
T +

P · |B |
T +

R · |C |
T I · J · K

for A, by I
P times for B, and by K

R times for C . We note that
the RMM method cannot reduce the communication cost
when using the same number of tasks with CuboidMM (i.e.,
the same number of voxels per task) because a task in RMM
processes non-consecutive voxels due to the hash partition-
ing scheme. The bottom row in Table 2 summarizes the cost
of CuboidMM. Since a single cuboid is processed by a single
task, the memory usage per task of CuboidMM is equal to
the size of a cuboid in Table 2.

In fact, CuboidMM is a generalization of the existing three
methods, BMM, CPMM, and RMM, and so, can perform ma-
trix multiplication like either BMM, CPMM, or RMM by
changing the parameters P , Q , and R. For example, in Fig-
ure 3(a), CuboidMM using (4, 1, 1)-cuboid partitioning works
like BMM, that using (1, 1, 8)-cuboid partitioning works like
CPMM, and that using (4, 6, 8)-cuboid partitioning works
like RMM.

Figure 4 shows the steps of distributed matrix multiplica-
tion of CuboidMM for the example in Figure 3(a). We assume
the number of tasks T = 8. In the matrix repartition step,
each of P ·Q · R = 8 cuboids is assigned to each task. In the
local multiplication step, a total of eight tasks {t0, · · · , t7}
perform their own workload that multiplies 2 × 4 blocks
of A by 4 × 3 blocks of B and produces 2 × 3 intermediate
blocks of C . This step is accelerated by GPU computation,
which will be presented in Section 4. In the matrix aggrega-
tion step, the intermediate blocks of C from a pair of tasks
⟨to , to+1⟩ (0 ≤ o < 4) are aggregated to obtain the final output
blocks ofC . In general, the intermediate blocks from R tasks,
e.g., {to , · · · , to+R−1} (0 ≤ o < P · Q) should be aggregated
for the final blocks.

3.2 Optimization of CuboidMM
For maximizing the performance of CuboidMM, it is impor-
tant to find the best parameters P∗,Q∗, andR∗ that can reduce
the communication cost as much as possible. We assume that
every task can use the same amount of memory, θt , which
is typically equal to the amount of main memory divided
by the number of concurrent tasks per node, Tc . Then, our
optimization problem can be formulated as in Eq.(2), where
Mem(P ,Q,R) is a function of memory usage per task when

𝐷","," 𝐷",",$ ⋯ 𝐷$,$,$
matrix

repartition

´

=

´

=

´

=

´

=local
multiplication

matrix
aggregation

𝑡" 𝑡$ 𝑡' 𝑡(
⋯

⋯

𝐷$,$,"

𝑃$,$,$
𝐷$,$," 𝐷$,$,$

𝑃$,$,"
𝐷",","

𝑃$,$,$
𝐷",",$

𝐷",$,$
𝐷$,$,$

Figure 4: Steps of CuboidMM using (2, 2, 2)-cuboid par-
titioning.

using the parameters P , Q , and R, and Cost(P ,Q,R) a func-
tion of communication cost for the parameters.

(P∗,Q∗,R∗) = argmin
c ∈{(P,Q,R) |Mem(P,Q,R)≤θt }

Cost(c) (2)

The functionMem() can be defined as in Eq.(3), where the
terms |A |P ·R ,

|B |
R ·Q , and

|C |
P ·Q indicate the average numbers of

elements per cuboid in the matricesA, B, andC , respectively.
Here, we know both |A| and |B | and estimate |C | as a fully
dense matrix as mentioned in Section 2.2.2.

Mem(P ,Q,R) =
|A|

P · R
+
|B |

R ·Q
+
|C |

P ·Q
(3)

The function Cost() can be defined as in Eq.(4), where
the terms Q · |A| + P · |B | indicate the amount of replicated
data of A and B in the matrix repartition step, and the term
R · |C | indicates the amount of shuffled data ofC in the matrix
aggregation step.

Cost(P ,Q,R) = Q · |A| + P · |B | + R · |C | (4)

We find the optimal parameters (P∗,Q∗,R∗) using exhaus-
tive search. Here, the execution time is almost negligible due
to their limited search space. Although the matrices are very
large in terms of the number of elements, the search space
of I × J × K is usually not so large, since I , J , and K are the

numbers of blocks. For example, in our experiments, when
both A and B matrices are 100, 000 × 100, 000, and block size
is 1000×1000, determination of the optimal parameters takes
only 0.3 seconds using a single thread.
If the sizes of input matrices are relatively small, the ma-

trices may be fit in the available memory of a single or few
tasks. In this case, if we determine P , Q , and R such that
P ×Q ×R < M ×Tc , whereM is the number of cluster nodes,
we cannot fully exploit the parallelism of a distributed system.
Thus, we prune the parameters such that P ×Q ×R < M ×Tc
from the search space when solving Eq.(2). In the exceptional
case where I × J ×K < M ×Tc , we determine the parameters
as P∗ = I , Q∗ = J , and R∗ = K for exploiting the parallelism
as much as possible, which actually works like the RMM
method.

4 ACCELERATION OF CUBOIDMM USING
GPUS

In this section, we propose a method that can accelerate
distributed matrix multiplication by exploiting GPUs. We
present the concept of subcuboid partitioning in Section 4.1
and the optimization of parameters for subcuboid partition-
ing in Section 4.2. Then, we present the streaming of sub-
cuboids to GPUs in Section 4.3 and its algorithm in Sec-
tion 4.4.

4.1 Subcuboid partitioning
The CuboidMM method in Section 3 partitions the entire
3-dimensional model space into multiple cuboids such that
each cuboid can fit in a task memory of the capacity θt . There
are typically multiple tasks running in a single machine. We
assume that each machine can be equipped with multiple
GPUs for acceleration of matrix multiplication in general,
but we explain our method with a single GPU in this pa-
per for simplicity. GPU computation is typically done by
the following three steps: (1) copying input data from main
memory to GPU (device) memory; (2) executing a kernel
function; (3) copying output data back from GPU memory to
main memory. The size of the GPU memory is usually much
smaller than that of main memory. Thus, multiple tasks that
run on a machine and try to use the same GPU simultane-
ously can lead to a serious shortage of working memory for
each task in the GPU memory [7]. We denote the capacity of
GPU memory per task by θд , which is usually smaller than
θt . For example, when six tasks are concurrently running on
a machine equipped with 64GB main memory and a GPU of
12GB device memory, θд is only 2GB, whereas θt is about
10GB.

In order to solve the shortage problem of the GPUmemory,
we further partition each cuboid into multiple subcuboids
such that each subcuboid can fit in the GPU memory space
of the capacity θд . We use the same partitioning scheme

with CuboidMM for partitioning a cuboid into subcuboids.
For this subcuboid partitioning, we use three parameters P2,
Q2, and R2 that mean the numbers of partitions in a single
cuboid on the i-axis, j-axis, and k-axis, respectively. Thus, it
makes a total of P2 ·Q2 ·R2 subcuboids per cuboid, and so, we
denote it by (P2,Q2,R2)-subcuboid partitioning. Figure 5(a)
shows an example of (1, 1, 2)-subcuboid partitioning for two
cuboids D0,0,0 and D0,0,1 in Figure 4. Here, each cuboid is
partitioned into two subcuboids {S0,0,0, S0,0,1}, each of which
consists of 2 × 3 × 2 voxels.
Since all the subcuboids of a task cannot fit in the GPU

memory space for the task at the same time, the subcuboids
are copied to and processed in the GPU sequentially. We
denote in-GPU processing of a single subcuboid by an it-
eration. For example, in Figure 5(a), in the task t0, a sub-
cuboid S0,0,0 is processed as iteration0, and then, the other
subcuboid S0,0,1 is processed as iteration1. Likewise, in task
t1, two subcuboids {S0,0,0, S0,0,1} are processed as iteration0
and iteration1, respectively. We assume two tasks t0 and t1
are running on the same machine. Then, both iteration0 of
t0 and iteration0 of t1 are executed concurrently in the GPU.
After these are done, the succeeding iteration1s are executed
concurrently. The concurrent execution ofmultiple iterations
in our DistME system is mainly implemented using CUDA
Multiple Process Service (MPS) [13], which allows multiple
processes to execute their kernel functions concurrently.
In many cases, a cuboid is partitioned into multiple sub-

cuboids along the k-axis as in Figure 5(a), which will be ex-
plained in Section 4.2 in detail. Thus, the intermediate blocks
of the output matrix C can be efficiently aggregated during
processing all the subcuboids by keeping them in the same
buffer in GPU memory. We denote the intermediate blocks
of C computed by iterationn of the task tm by Cm,n . Then,
the task tm aggregates {Cm,0, · · · ,Cm,R2−1} into Cm , where
R2 is the number of subcuboids along the k-axis, andCm the
result of aggregation by tm . For example, in Figure 5(a), C0,0

and C0,1 are aggregated in the GPU by the task t0, and C1,0

andC1,1 are aggregated in the GPU by the task t1. The result
of t0, i.e., C0, and that of t1, i.e., C1 are further aggregated by
the matrix aggregation step in Figure 4.

4.2 Optimization of subcuboids for GPU
For maximizing the performance of processing a cuboid us-
ing GPU, it is important to find the best parameters P∗2 , Q

∗
2 ,

and R∗2 that reduce the communication cost between main
memory and GPU memory as much as possible. The band-
width of PCI-E bus between main memory and GPU is usu-
ally up to 16GB/s and tends to become a performance bot-
tleneck as the computational power of GPU increases. Since
the total number of multiplication operations for process-
ing a cuboid in GPU is the same regardless of the result
of subcuboid partitioning, we focus on reducing the PCI-E

0,00,1
1,01,1

cuboid
repartition

0,00,10,2
1,01,11,2

0,00,10,2
1,01,11,2

´

=

in-GPU
multiplication

𝒕𝟎 𝒕𝟏

0,20,3
1,21,3

2,02,12,2
3,03,13,2

0,00,10,2
1,01,11,2

´

=

0,0 0,1 0,2
1,0 1,1 1,2

0,40,5
1,41,5

4,04,14,2
5,05,15,2

0,00,10,2
1,01,11,2

´

=

0,60,7
1,61,7

6,06,16,2
7,07,17,2

0,0 0,1 0,2
1,0 1,1 1,2

´

=

0,0 0,1 0,2
1,0 1,1 1,2

iteration0 iteration1 iteration0 iteration1

A0,0 B0,0

C0,0

A0,1 B0,1

C0,1

A1,0 B1,0

C1,0

A1,1 B1,1

C1,1

𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝟎

(a) Local multiplication using GPUs
time

𝑠𝑡𝑟𝑒𝑎𝑚	1

𝑠𝑡𝑟𝑒𝑎𝑚	2

𝑠𝑡𝑟𝑒𝑎𝑚	3

𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝟏
𝐾5,5∗
5,5

𝐾8,5∗
5,5

𝐾5,8∗
8,5

𝐾8,8∗
8,5

𝐾5,9∗
9,5

𝐾8,9∗
9,5

𝐾5,:∗
:,5

𝐾8,:∗
:,5

𝐵
0,0

𝐵
1,0

𝐴
0,2

𝐴
0,3

𝐴
1,2

𝐴
1,3

𝐵
2,0

𝐵
3,0

𝐴
0,0

𝐴
0,1

𝐴
1,0

𝐴
1,1

𝐶
0,0

𝐶
1,0

𝐾5,5∗
5,8

𝐾8,5∗
5,8

𝐾5,8∗
8,8

𝐾8,8∗
8,8

𝐾5,9∗
9,8

𝐾8,9∗
9,8

𝐾5,:∗
:,8

𝐾8,:∗
:,8

𝐵
0,1

𝐵
1,1

𝐵
2,1

𝐵
3,1

𝐶
0,1

𝐶
1,1

𝐾5,5∗
5,9

𝐾8,5∗
5,9

𝐾5,8∗
8,9

𝐾8,8∗
8,9

𝐾5,9∗
9,9

𝐾8,9∗
9,9

𝐾5,:∗
:,9

𝐾8,:∗
:,9

𝐵
0,2

𝐵
1,2

𝐵
2,2

𝐵
3,2

𝐶
0,2

𝐶
1,2

(b) Timeline of GPU streams in tasks t0 and t1

𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝟎

𝐾5,?∗
?,9

𝐾8,?∗
?,9

𝐾5,@∗
@,9

𝐾8,@∗
@,9

𝑠𝑡𝑟𝑒𝑎𝑚	4

𝑠𝑡𝑟𝑒𝑎𝑚	5

𝑠𝑡𝑟𝑒𝑎𝑚	6 𝐾5,D∗
D,9

𝐾8,D∗
D,9

𝐾5,E∗
E,9

𝐾8,E∗
E,9

𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝟏

𝐵
4,2

𝐵
5,2

𝐵
6,2

𝐵
7,2

𝐾5,?∗
?,5

𝐾8,?∗
?,5

𝐾5,@∗
@,5

𝐾8,@∗
@,5

𝐾5,D∗
D,5

𝐾8,D∗
D,5

𝐾5,E∗
E,5

𝐾8,E∗
E,5

𝐵
4,0

𝐵
5,0

𝐴
0,6

𝐴
0,7

𝐴
1,6

𝐴
1,7

𝐵
6,0

𝐵
7,0

𝐴
0,4

𝐴
0,5

𝐴
1,4

𝐴
1,5

𝐶
0,0

𝐶
1,0

𝐾5,?∗
?,8

𝐾8,?∗
?,8

𝐾5,@∗
@,8

𝐾8,@∗
@,8

𝐾5,D∗
D,8

𝐾8,D∗
D,8

𝐾5,E∗
E,8

𝐾8,E∗
E,8

𝐵
4,1

𝐵
5,1

𝐵
6,1

𝐵
7,1

𝐶
0,1

𝐶
1,1

𝐶
0,2

𝐶
1,2

𝑺𝟎,𝟎,𝟎 𝑺𝟎,𝟎,𝟏 𝑺𝟎,𝟎,𝟎 𝑺𝟎,𝟎,𝟏

C0 C1

𝐷5,5,5

𝑣5,5,5

𝐷5,5,8

Figure 5: Acceleration of the local multiplication step using GPUs (T = 8, (1, 1, 2)-subcuboid partitioning).

communication cost, as we focus on reducing the network
communication cost in Section 3.2. The optimization problem
for subcuboid partitioning can be formulated as in Eq.(5).

(P∗2 ,Q
∗
2 ,R
∗
2) = argmin

c ∈{(P2,Q2,R2) |Memm (P2,Q2,R2)≤θд }
Costm(c) (5)

The functionMemm() is basically the same function with
Mem() in Section 3.2 except thatMemm() considers the sizes
of A and B (denoted by Am and Bm , respectively) within the
given cuboid processed by the task tm , instead of those of
the entire A and B. Different tasks process different parts of
A or B, which have different sizes and sparsity.

The function Costm() can be defined as in Eq.(6), which
is slightly different from the function Cost() in Section 3.2.
The last term in Costm() has no multiplication of R2, while
that in Cost() is R · |C |. If a subcuboid satisfies the condition
Memm(P2,Q2,R2) ≤ θд in Eq.(5), Am , Bm , and Cm all can fit
in the GPUmemory space for tm , and so,Cm can obviously fit
in. That means we can keep and aggregate the intermediate
blocks for Cm in the GPU memory without communication
between main memory and GPU memory. Thus, we omit
R2 in Eq.(6). As a result, the optimization of Eq.(5) tends
to produce (1, 1,R2)-subcuboid partitioning. If a subcuboid
does not satisfy the condition Memm(P2,Q2,R2) ≤ θд due
to its large size, in particular, due to the size of Cm , larger
parameters of P2 > 1 and Q2 > 1 are picked from the search
space so as to decrease the size of Cm . In that case, these
parameters are still the ones that minimize Costm() among
all possible valid parameters. We note that a different task
can use different subcuboid partitioning depending on the
size and sparsity of its corresponding cuboid.

Costm(P2,Q2,R2) = Q2 · |A
m | + P2 · |B

m | + |Cm | (6)

4.3 GPU streaming of subcuboids
The naive method of processing each subcuboid using the
GPU in a task tm would be (1) copying an entire subcuboid

from main memory to GPU memory (H2D copy), (2) exe-
cuting kernel functions for multiplication while updating
Cm , and (3) copying Cm from GPU memory to main mem-
ory (D2H copy) at the last iteration. However, execution of
kernel functions in this method cannot start until the parts of
Am and Bm at iterationn (denoted by Am,n and Bm,n , respec-
tively) are completely copied to GPU memory. For example,
in task t0 in Figure 5(a), C0,0 can be calculated by calling
kernel functions only after four blocks of A0,0 and six blocks
of B0,0 are prepared in GPU memory. In order to improve
the performance of the naive method, our DistME system ex-
ploits the asynchronous GPU streams (e.g., CUDA Streams),
which could hide some memory access latency between GPU
and main memory [22].
At each iterationn , our strategy copies the smaller one

between Am,n and Bm,n as a chunk (H2D copy) and then
copies the other bigger one in a block-by-block fashion (H2D
copy) using multiple GPU streams while updating Cm . Fig-
ure 5(b) shows the timeline of six GPU streams used in the
tasks t0 and t1 for processing two cuboids D0,0,0 and D0,0,1
in Figure 5(a). Here, streams 1, 2, and 3 are used by t0, and
streams 4, 5, and 6 used by t1. We denote calling the ker-
nel function that performs matrix multiplication between a
single A block (Ai,k) and a single B block (Bj,k) by Ki,k∗k, j .
In stream 1, the task t0 calls the kernel function two times,
K0,0∗0,0 and K1,0∗0,0, after copying the B0,0 block, where the
first function call is for A0,0 × B0,0, and the second function
call for A1,0 × B0,0. The task t0 does similar jobs in streams 2
and 3. Here, H2D copies of these streams cannot overlap
with each other since the current GPU architecture does not
support it.

We note that each task in our strategy copies the set of B
blocks used for updating the same C block using the same
GPU stream for more efficient aggregation of C blocks. For
example, in Figure 5(b), the task t0 uses the same stream 1
for copying B0,0, B1,0, B2,0, and B3,0 (H2D copy) since it can

update C0,0 and C1,0 consistently. After the last iteration
finishes all its executions of the kernel function, it copies
them back to main memory (D2H copy) in the same GPU
stream.

4.4 Algorithm
Algorithm 1 presents the pseudo-code of the local multipli-
cation step processed by a task tm using GPU. The task first
finds (P∗2 ,Q

∗
2 ,R
∗
2) through the optimization in Section 4.2 and

performs subcuboid partitioning. Here, for simplicity, we
consider the size of a subcuboid as I ′ × J ′ × K ′ and denote
A-, B-, and C-side of the subcuboid by A′, B′, and C ′, respec-
tively. Then, the task creates J ′ streams and allocates the
buffers for A′, B′, and C ′, i.e., BufA, BufB, and BufC, in GPU.
After the initialization, the task copies A′ of the subcuboid
to GPU memory, if A′ < B′. Then, it performs asynchronous
copying each block of B′ to GPUmemory followed by calling
a kernel function by I ′ times consecutively. Here, the kernel
function is for multiplication between a pair of blocks, i.e.,
Ai,k and Bk, j . In particular, we use cublasDgemm() for dense
matrices and cusparseDcsrmm() for sparse matrices, as the
kernel function. There is usually a limitation on the number
of concurrent streams per GPU (e.g., 32). The task may create
and use more GPU streams than the limitation (i.e., J ′ > 32).
Then, these streams are arranged and executed by the GPU
scheduler. If the subcuboid just completed is the last one on
the k-axis (Line 19), the task copies the updated C ′ in GPU
memory back to main memory.

5 IMPLEMENTATION OF DISTME
In this section, we briefly explain the implementation of
DistME. We implement DistME on top of Spark, and so, it al-
lows users to describe their matrix computation queries (e.g.,
GNMF) using Scala API. From the query described by users,
DitsME generates a kind of physical plan that can be exe-
cuted in either CPU or GPU. Here, we implement the plan
generator by extending SparkSQL [3], which approach is also
used in MatFast [38]. For the GPU computation in the plan,
we use Jcuda [36]. DistME exploits the data serialization and
deserialization of SparkSQL to reduce the amount of shuffled
data.

A block of matrices is implemented using RDD (Resilient
Distributed Datasets) [39], in particular, using a record of
RDD, where a key is the row and column indices (e.g., i and
k) of the block, and a value is either our DenseMatrix class
or SparseMatrix class. DistME supports a number of matrix
operators such as element-wise, matrix multiplication, and
transpose. We implement them based on the transformation
operations of RDD, i.e., map, groupByKey, Cogroup, and re-
duceByKey. For the local multiplication step of DistME, we
use the cuBLAS and cuSPASE libraries for GPU computa-
tion. For the Row, Column, and Grid partitioning schemes

ALGORITHM 1: Local matrix multiplication in tm
Input: Dp,q,r , /*a cuboid*/

θд , /*the capacity of memory on GPU */
1 /* initialization */
2 (P∗2 ,Q

∗
2 ,R
∗
2) =

argminc ∈{(P2,Q2,R2) |Memm (P2,Q2,R2)≤θд }Cost
m(c)

3 S ← (P∗2 ,Q
∗
2 ,R
∗
2)-subcuboid partitioning of Dp,q,r ;

4 sort subcuboids S by (p2,q2, r2);
5 (I ′, J ′,K ′) ← dimension of a subcuboid;
6 create J ′ GPU streams;
7 allocate BufA, BufB, and BufC in GPU memory;
8 /* processing subcuboids on GPU */
9 for n ← 0 to P∗2 ·Q

∗
2 · R

∗
2 do

10 Sp2,q2,r2 ← n-the subcuboid in S

11 A′,B′,C ′← A−,B−,C-side of Sp2,q2,r2 ;
12 copy A′ to BufA in GPU;
13 for (k, j) ← 0 to (K ′, J ′) do
14 async-copy Bk, j to BufB using j-th stream;
15 for i ← 0 to I ′ do
16 call Ki,k∗k, j (Ai,k ,Bk, j) using j-th stream;
17 end
18 end
19 if r2 = R∗2 − 1 then
20 copy C ′ in BufC to main memory;
21 end
22 end

of DistME (in Section 2.1), we extend the RDD partitioner
class. We use the parquet format for reading and writing the
matrix data with HDFS.

6 EXPERIMENTAL EVALUATION
In this section, we present experimental results in four cate-
gories. First, we compare the CuboidMM method with the
existing methods, BMM, CPMM, and RMM, in terms of the
elapsed times and communication cost (i.e., amount of trans-
ferred data in the matrix repartition and aggregation steps).
We also check the P , Q , and R parameters determined by
the optimization in Section 3.2 can achieve the best perfor-
mance in CuboidMM. Second, we evaluate the performance
of the DistME system compared with the state-of-the-art
systems, SystemML [6, 18], and MatFast [38] in terms of the
elapsed times. Third, we evaluate the performance of matrix
factorization, in particular, Gaussian Non-Negative Matrix
Factorization [23] (GNMF) of DistME, compared with that of
the state-of-the-art systems, SystemML [6, 18], MatFast [38],

Table 3: Statistics of real datasets.

dataset ratings users items

MovieLens 27,753,444 283,228 58,098
Netflix 100,480,507 480,189 17,770

YahooMusic 717,872,016 1,823,179 136,736

and DMac [37]. Fourth, we compare DistME with two well-
known distributed matrix computation systems in the HPC
area, ScaLAPACK [12] and SciDB [8, 31].

6.1 Experimental setup
Datasets: For experiments, we use both real and synthetic
datasets. For real datasets, we use MovieLens [20] for small
size, Netflix [41] for medium size, and YahooMusic1 for large
size. Table 3 summarizes the statistics of three datasets. We
use those datasets for evaluating the performance of GNMF.
For synthetic datasets, we generate matrices that have ran-
domly and uniformly distributed non-zero elements as in
SystemML [6, 18]. The input matricesA and B are of I×K and
K× J , respectively, whereK becomes the common dimension
of A and B. We generate three types of synthetic datasets,
which are also used in [19]: two general matrices (I = K = J),
two matrices with a common large dimension (K > I = J),
and two matrices with two large dimensions (I = J > K).
The sparsity of matrices are in the range of 0.0 to 1.0 and
vary depending on the experiment, where 1.0 means a fully
dense matrix.

Systems compared: We compare our DistME with Sys-
temML, MatFast, DMac, ScaLAPACK, and SciDB. We use
the original codes for SystemML2 and MatFast3. There are
two versions of MatFast, naive and optimization, where we
use the former version since the latter version is not avail-
able. Since the current SystemML and MatFast do not sup-
port GPU-based matrix multiplication in a distributed envi-
ronment, we modify both SystemML and MatFast so as to
support GPU-based matrix multiplication by implementing
GPU-based matrix multiplication kernel functions based on
cuBLAS and cuSPARSE as in our DistME. We denote GPU-
versions of SystemML and MatFast by SystemML(G) and
MatFast(G), respectively.
For DMac, we cannot find the code available, and so, im-

plement it in the same code optimization level with DistME.
We note that the above four systems and our DistME all are
implemented on top of Spark [40]. We also evaluate the per-
formance of DistME compared with the open-source library
ScaLAPACK [12] and the array database SciDB [8, 31].

H/W and S/W setting: We conduct all the experiments
on the same cluster of one master node and nine slave nodes.
1https://webscope.sandbox.yahoo.com/catalog.php?datatype=r
2https://github.com/apache/systemml/tree/branch-1.0.0
3https://github.com/yuyongyang800/SparkDistributedMatrix

Table 4: Sizes of inputmatrices and the optimal param-
eters of CuboidMM(K : thousand,M : million).

type sizes of parameters
input matrices (P∗,Q∗,R∗)

70K × 70K × 70K (4,7,4)
two general 80K × 80K × 80K (6,7,4)
matrices 90K × 90K × 90K (10,5,5)

(N × N × N) 100K × 100K × 100K (7,9,5)
two matrices 10K × 100K × 10K (1,1,9)

with a common 10K × 500K × 10K (1,1,18)
large dimension 10K × 1M × 10K (1,1,36)
(10K × N × 10K) 10K × 5M × 10K (1,1,176)
two matrices 100K × 1K × 100K (9, 10, 1)
with two 250K × 1K × 250K (8, 13, 1)

large dimensions 500K × 1K × 500K (17, 24, 1)
(N × 1K × N) 750K × 1K × 750K (26, 35, 1)

All nodes are connected via 10Gbps Ethernet. Each node is
equipped with a six-core 3.5 GHz CPU, 64GB main memory,
500GB SSD for Spark, 4 TB HDD for HDFS, and a single
NVIDIA GTX 1080 Ti GPU having 11GB device memory. In
terms of software, we use CentOS 6.6, Spark 2.1.0, Hadoop
2.7.2, CUDA 8.0, ScaLAPACK 2.0 with MPICH 3.2, and SciDB
18.1. We set the number of tasks per node to 10 (Tc = 10),
and so, set θt = 6GB and θд = 1GB. We use the block size
of 1000× 1000 in all experiments, which is the default size in
other systems such as MatFast [38] and SystemML [6, 18].

6.2 Performance of CuboidMM
We compare the performances of BMM, CPMM, RMM, and
CuboidMMusing large-scale synthetic densematrices (sparsi-
ty is 0.5). We note that all four methods in this experiment
are evaluated on DistME and so exploit GPU computation,
where RMM cannot perform cuboid-level GPU computa-
tion, but simple block-level GPU computation due to its
hash partitioning. Since our (P ,Q,R)-cuboid partitioning is
a generalization of the existing methods, we can evaluate
the performance of BMM, CPMM, and RMM by changing
the parameters P , Q , and R as explained in Section 3.1. Here,
CuboidMM uses the optimal parameters P∗, Q∗, and R∗. Ta-
ble 4 summarizes the sizes of three types of datasets used
and the optimal parameters (P∗,Q∗,R∗) used in CuboidMM.
The optimal parameters are automatically determined as in
Section 3.2.
We set T to the maximum number of tasks for the BMM

and CPMM methods, i.e., T = I for BMM, and T = K for
CPMM, to obtain their maximum performances, and at the
same time, to avoid out of memory. Likewise, we setT = I · J
for RMM,which is the best setting in terms of the aggregation
performance of intermediate blocks of the output matrix.
The setting of T = I · J · K for RMM incurs some errors

due to too many tasks in Spark. In our CuboidMM, T is
automatically determined as P∗ · Q∗ · R∗. Figures 6(a), (b),
and (c) show the elapsed times of four methods for three
types of datasets, and Figures 6(d), (e), and (f) show their
corresponding communication costs. In the figures, O.O.M.
means out of memory, and T.O. means time out (longer than
4,000 seconds).

Two general matrices: Figures 6(a) and (d) shows that
CuboidMM significantly outperforms all other methods in
terms of both elapsed times and communication cost. We
note that Y -axis is in log-scale. Among the existing methods,
CPMM and BMM show better performance than RMM as
mentioned in Section 2.2.4. The BMM method fails due to
O.O.M. when N is larger than 80K .

Compared with RMM, the proposed CuboidMM improves
the elapsed time by 3.86 times for N = 70K , 4.80 times for
80K , 5.34 times for 90K , and 6.11 times for 100K . There is a
similar tendency when comparing CuboidMM with CPMM.
That is, the improvement of CuboidMM compared with
the existing methods becomes more marked as the matrix
sizes get larger. The gap between CuboidMM and the other
methods is bigger in terms of communication cost. When
N = 100K , CuboidMM reduces the amount of transferred
data by 8.17 times compared with CPMM and 19.46 times
compared with RMM.

Twomatrices with a common large dimension: In this
experiment, the matrix A is fat (i.e., K > I), while the matrix
B is tall (i.e.,K > J). Figures 6(b) and (e) shows similar tenden-
cies with Figures 6(a) and (d). CuboidMM still significantly
outperforms all other methods in terms of both measures,
and BMM fails due to O.O.M. when N is larger than 500K .

We note that CuboidMM is much faster than CPMM, and
at the same time, reduces the amount of transfer compared
with CPMM, although P∗ = 1 andQ∗ = 1 as CPMM in Table 4.
It is natural that P∗ = 1 and Q∗ = 1 in CuboidMM because
the corresponding 3-dimensional model has a very long di-
mension along the k-axis. In the figures, when N = 5M ,
CuboidMM improves the elapsed time by 3.92 times and
reduces the communication cost by 60.39 times compared
with the second best method, CPMM. This is mainly due
to the difference in the numbers of partitions on the k-axis.
CPMM uses K partitions, while CuboidMM uses R∗ parti-
tions (R∗ < K). For example, when N = 5M (i.e., Nb = 5000),
K is 5000, but R∗ is just 176 in Table 4. A larger number of
partitions incurs a larger amount of data transferred in the
matrix aggregation step.

Two matrices with two large dimensions: In this ex-
periment, the matrix A is tall (i.e., K < I), while the ma-
trix B is fat (i.e., K < J). Figures 6(c) and (f) shows that
only CuboidMM can process the matrix multiplication of
750K × 1K × 750K . For that size, both CPMM and BMM
fail due to O.O.M. and RMM times out (i.e., longer than 4000

seconds). In particular, CPMM fails due to O.O.M. even for
the case of N = 500K . It is because the amount of inter-
mediate output blocks per task, i.e., |C |, increases rapidly
as N increases for this type of dataset. In the figures, when
N = 500K , CuboidMM improves the elapsed time by 1.63
times and reduces the communication cost by 11.58 times
compared with the second best method, BMM.

6.3 Performance of DistME
We compare the performances of SystemML, MatFast, and
DistME using three different synthetic datasets. We denote
DistME with and without the GPU method in Section 4 by
DistME(G) and DistME(C), respectively. We note that Y -axis
in Figures 7(a)-(d) is in log-scale. In the figures, E.D.C. means
exceeding the disk capacity, where the size of the intermedi-
ate data becomes larger than the total amount of hard disk
capacity in the cluster (> 36TB), and so the execution fails.

Figure 7(a) shows the elapsed times when using the dataset
of the type “two general matrices” of dense matrices. For this
dataset, MatFast and SystemML use CPMM for all N values.
For N = 30K , DistME(C) is 3.1 and 1.62 times faster than
MatFast(C) and SystemML(C), respectively. The performance
gap gets larger as the data size increases. For example, when
N = 40K , DistME(C) is 2.54 times faster than SystemML(C),
where MatFast(C) is O.O.M. This performance gap is mainly
due to both lower communication overhead and higher max-
imum parallelism of DistME(C) using CuboidMM. The left
three bars in Figure 7(e) show the time ratio of MatFast(C),
SystemML(C), and DistME(C), where the communication
overhead in the matrix repartition and aggregation steps of
DistME(C) is much lower than those of the other methods. In
addition, as shown in Table 2, CuboidMM used in DistME(C)
has much higher maximum parallelism than CPMM used in
SystemML(C). For example, when N = 40K , SystemML(C)
executes only 40 concurrent tasks among 90 possible ones,
while DistME(C) executes all 90 concurrent tasks. In Fig-
ure 7(a), MatFast(G), SystemML(G), and DistME(G) improve
the performance by 3.8, 2.39, and 5.59 times compared with
MatFast(C), SystemML(C), and DistME(C), respectively. The
improvement of DistME(G) is larger than those of MatFast(G)
and SystemML(G) due to its GPU acceleration method in Sec-
tion 4.

Figure 7(b) shows the result for the dataset of the type “two
matrices with a common large dimension” of dense matrices.
This dataset represents the case where the convolution layer
in deep learning is calculated by matrix multiplication [11].
This type requires a larger amount of computation, and at
the same time, incurs a larger amount of intermediate data
in order to generate a single result block than other types.
In the experiments, both MatFast and SystemML choose
CPMM since the size of the output matrix is smaller than

796 1185 1757 2712

434 594 797 1236
390

206 247 329 444

10

100

1000

10000

70K 80K 90K 100K

El
ap

se
d

tim
e

(s
ec

)

Input matrices (N ✕ N ✕ N)
(a) two general matrices (elapsed time)

37

153
382

2292

26
94

251

1281

28
19

63 75

327

10

100

1000

10000

100K 500K 1M 5M

Ex
ec

ut
io

n
tim

e
(s

ec
)

Input matrices (10K ✕ N ✕ 10K)

RMM CPMM BMM CuboidMM

(b) two matrices with a common large dimension
(elapsed time)

44

379

1440

138

883

23

248 390

18
62

240 357

10

100

1000

10000

100K 250K 500K 750K

Ex
ec

ut
io

n
tim

e
(s

ec
)

Input matrices (N ✕ 1K ✕ N)
(c) two matrices with two large dimensions

(elapsed time)

(d) two general matrices (communication cost)

39921
59651 84731

116231
17285

27379 35637
48786

22253

1730 2751 3602 5974

10

100

1000

10000

100000

1000000

70K 80K 90K 100K

Am
ou

nt
 o

f d
at

a
(M

B)

Input matrices (N ✕ N ✕ N)

1232 5982

35728
440983

428 1872

27893

350973

401
291

512 1235
5812

10

100

1000

10000

100000

1000000

100K 500K 1M 5M

Am
ou

nt
 o

f d
at

a
(M

B)

Input matrices (10K ✕ N ✕ 10K)

RMM CPMM BMM CuboidMM

1102
6983

21903

7
21

402
2404

9712

7

231
839 1814

1

10

100

1000

10000

100000

100K 250K 500K 750K

Am
ou

nt
 o

f d
at

a
(M

B)

Input matrices (N ✕ 1K ✕ N)
(e) two matrices with a common large dimension

(communication cost)
(f) two matrices with two large dimensions

(communication cost)

O.
O.
M.

O.
O.
M.

O.
O.
M.

O.
O.
M.

O.
O.
M.

O.
O.
M.

O.
O.
M.

O.
O.
M.

O.
O.
M.

T.
O.

O.
O.
M.

O.
O.
M.

O.
O.
M.

T.
O.

O.
O.
M.

O.
O.
M.

O.
O.
M.

O.
O.
M.

O.
O.
M.

O.
O.
M.

Figure 6: Performance comparison among BMM, CPMM, RMM, and CuboidMM.

that of input matrices. DistME(C) outperforms both Mat-
Fast(C) and SystemML(C), and DistME(G) outperforms both
MatFast(G) and SystemML(G). The gap among GPU-based
systems is larger than that among CPU-based systems since
the type of dataset is computationally intensive, and so, re-
ducing communication overhead becomes more important.
For example, when N = 5M , DistME(C) outperforms Sys-
temML(C) by 1.26 times, whereas DistME(G) outperforms
SystemML(G) by 2.18 times. This type of dataset incurs a
tremendous amount of intermediate data as N increases,
and thus, SystemML and MatFast fail due to E.D.C. when
N = 20M , where the amount of intermediate data exceeds
36 TB. In contrast, DistME incurs only 1.5TB intermediate
data due to its CuboidMM.
Figure 7(c) shows the result for the dataset of the type

“two matrices with two large dimensions” of dense matrices.
This dataset represents the case of multiplying two factor
dense matrices in matrix factorization. In this experiment,
MatFast uses CPMM, while SystemML uses RMM. Since
the size of the result matrix is larger than those of input
matrices, i.e., |C | is very large, MatFast using CPMM fails due
to O.O.M. for all data sizes used. SystemML using RMM has
no problem of O.O.M., but when N = 1.5M and N = 2M , it
fails due to E.D.C. When N = 1M , DistME(C) and DistME(G)
outperform SystemML(C) and SystemML(G) by 4.92 and 6.63
times, respectively.

Figure 7(d) shows the elapsed times of the multiplication
between one large sparse matrix and one small dense matrix
while varying the sparsity of the large matrix. This dataset
represents the case of multiplying a large rating sparse ma-
trix with a small dense factor matrix in matrix factorization.

For this dataset, both MatFast and SystemML use CPMM.
Although one of the input matrices of this dataset is not
dense, but sparse, the shape of the dataset is similar with
that of the dataset used in Figure 7(b), i.e., a large common
dimension, and so, performance tendencies in both figures
are somewhat similar with other.
Figures 7(e) and (f) show that our DistME significantly

reduces communication overhead compared with MatFast
and SystemML due to its cuboid partitioning for all kinds of
datasets. For example, when 1M × 1K × 1M , DistME shuffles
3.18 times smaller data than SystemML. Figure 7(g) shows
the GPU core utilization of MatFast(G), SystemML(G), and
DistME(G). Here, the y-axis means the average of GPU core
utilization in the local multiplication step, which is measured
by the NVIDIA’s monitoring tool, nvidia-smi. In the figure,
DistME(G) achieves better utilization for both dense and
sparse matrices due to its GPU acceleration method seam-
lessly combined with CuboidMM.

6.4 Performance of GNMF
We compare the performances of a total of seven systems for
the GNMF query on three real datasets: MovieLens, Net-
flix, and YahooMusic. The GNMF query requires to per-
form a number of iterations to find two factor matrices
W and H for a given V , and we perform the query up to
ten iterations. In Figures 8(a)-(c), We set the factor dimen-
sion to 200 as in MatFast [38] and DMac [37]. Figure 8(a)
shows the accumulated execution times for MovieLens (small
dataset). In the figure, DistME(G) outperforms all the other
systems, in particular, MatFast(G) and SystemML(G) by 1.56
and 1.2 times, respectively. Figure 8(b) shows the results

3182

6428

1525

2430
2048

4207

1207

3182

1627

3639
7240

488

1116

2121

100

1000

10000

5M 10M 20M
El

ap
se

d
Ti

m
e

(s
ec

)
Input matrices (5K ✕ N ✕ 5K)

MatFast(C) MatFast(G) SystemML(C) SystemML(G) DistME(C) DistME(G)

1232
324647

2193

270

1839

397

863
1663

71
156

326

10

100

1000

10000

30K 40K 50K

El
ap

se
d

Ti
m

e
(s

ec
)

Input matrices (N ✕ N ✕ N)

1158 1122

235 346 439

169
269

345

10

100

1000

10000

1M 1.5M 2MEl
ap

se
d

Ti
m

e
(m

in
)

Input matrices (N ✕ 1K ✕ 1M)

2.6 2.3 5.5 4.6 5.6 27.2

77.7 77.9
90.8

58.3 48.1

54.3

19.7 19.8 3.7
37.1 46.3

18.5

0%

20%

40%

60%

80%

100%

MatFast SystemML DistME MatFast SystemML DistME

matrix repartition local multiplication matrix aggregation

(a) two large matrices (b) two matrices with
a common large dimension

(e) time ratios of three steps (f) communication cost

72.8

40.2

69.2

39.4

98.4
79.7

0

50

100

Dense matrix Sparse matrix

G
PU

 c
or

e
ut

iliz
at

io
n

(%
)

Input matrices

MatFast SystemML DistME

(g) GPU core utilization

(c) two matrices with two large dimensions

1201
27561080

2300

1265
3131

1076
2522

618 758 910

196 251 341

10

100

1000

10000

0.0001 0.001 0.01El
ap

se
d

Ti
m

e
(s

ec
)

Input matrices (500K ✕ 1M X 1K)
(d) one large sparse matrix with

one small dense matrix

(G)(C)

O.
O.
M.

O.
O.
M.

O.
O.
M.

O.
O.
M.

O.
O.
M.

O.
O.
M.

O.
O.
M.

E.
D.
C.

E.
D.
C.

E.
D.
C.

E.
D.
C.

E.
D.
C.

E.
D.
C.

E.
D.
C.

E.
D.
C.

O.
O.
M.

O.
O.
M.

O.
O.
M.

O.
O.
M.

E.
D.
C.

E.
D.
C.

O.
O.
M.

O.
O.
M.

E.
D.
C.

E.
D.
C.

O.
O.
M.

1306

576493
962

2170

296
168

391
682

102
0

500

1000

1500

2000

2500

40K✕40K✕40K 5K✕5M✕5K 1M✕1K✕1M 500K✕1M✕1K
(0.0001)

Am
ou

nt
 o

f d
at

a
(G

B)

Input matrices

MatFast SystemML DistME

Figure 7: Comparison among MatFast(C), MatFast(G), SystemML(C), SystemML(G), DistME(C), and DistME(G).

for Netflix (medium dataset). DistME(G) outperforms Mat-
Fast(G) and SystemML(G) by 3.5 and 1.7 times, respectively.
We note that the performance gap gets larger as the data
size increases. Figure 8(c) shows the results for YahooMu-
sic (large dataset). DistME(G) outperforms MatFast(G) and
SystemML(G) by 3.45 and 1.92 times, respectively. Except
for DistME(G), SystemML(G) shows the fastest performance.
Among CPU-based systems, DistME(C) shows the fastest per-
formance for Netflix and YahooMusic, while SystemML(C)
shows the fastest performance for MovieLens.

Figure 8(d) presents the execution times while varying the
factor dimension in YahooMusic. When the factor dimension
is larger than 500, MatFast fails due to O.O.M. DistME(G)
outperforms SystemML(G) by 3.88 times when the factor di-
mension is 1000. We note that the performance gap between
DistME(C) and SystemML(G) gets smaller as the factor di-
mension increases because SystemML generates a larger
amount of intermediate data than DistME. We also note
that matrix multiplication is very time-consuming, and so,
takes 81% of a total elapsed time for processing the GNMF
query (SystemML(C), YahooMusic).

6.5 Comparison with Systems in HPC
We compare the performance of DistME with SciDB [8, 31]
and ScaLAPACK [12]. For fair comparison, we use DistME(C)
instead of DistME(G). ScaLAPACK is a highly tuned library
for distributed linear algebra routines using MPI communi-
cation. SciDB is an open-source data management system
for large-scale array data that can support matrix operations.
SciDB provides linear algebra operators wrapping ScaLA-
PACK. We launch ten processes per node for ScaLAPACK,
SciDB, and DistME(C).

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10

El
ap

se
d

Ti
m

e
(s

ec
)

number of iterations

MatFast(C) MatFast(G) SystemML(C) SystemML(G)
DMac DistME(C) DistME(G)

0

250

500

750

1 2 3 4 5 6 7 8 9 10

El
ap

se
d

Ti
m

e
(s

ec
)

number of iterations

0

2000

4000

6000

8000

10000

1 2 3 4 5 6 7 8 9 10

El
ap

se
d

Ti
m

e
(s

ec
)

number of iterations

1802
1042

889
2296

6619

582
976 3240

741
1578

3255

302
526

836

10

100

1000

10000

200 500 1000

El
ap

se
d

Ti
m

e
(s

ec
)

factor dimension

(a) MovieLens (b) Netflix

(c) YahooMusic
(d) Performance while varying

a factor dimension

O.
O.
M.

O.
O.
M.

O.
O.
M.

O.
O.
M.

Figure 8: Performance comparison for GNMF.

Table 5 shows the elapsed times of matrix multiplication
for three types of dense matrices: N × N × N , 5K × N × 5K ,
and N × 1K × N . In all experiments, ScaLAPACK shows
a better performance than SciDB. For the first type N ×
N × N , DistME(C) shows a worse performance compared
with ScaLAPACK and SciDB for a small data (N = 10K),
but outperforms both ScaLAPACK and SciDB for a large
data (N = 50K). The reason why DistME(C) is faster than
ScaLAPACK for a large data is that the matrix multiplication
method used in ScaLAPACK incurs a large amount of com-
munication overhead across processes [16, 19]. In particular,
the communication overhead in ScaLAPACK becomes severe

Table 5: Comparison with ScaLAPACK and SciDB.

type N ScaLAPACK SciDB DistME(C)

N × N × N 10K 31s 33s 42s
50K 1865s 1998s 1663s

5K × N × 5K 1M 995s 1069s 326s
5M 70m O.O.M. 27m

N × 1K × N 100K 248s 332s 122s
500K O.O.M. O.O.M. 57m

when dealing with a common large dimension [16, 19]. For
the second type 5K × N × 5K , which has a common large
dimension, DistME(C) outperforms SciDB and ScaLAPACK
by 3.28 and 3.05 times, respectively, when N = 1M . Dif-
ferent from ScaLAPACK, DistME(C) performs distributed
matrix multiplication in an optimal manner in terms of net-
work communication cost and memory usage per task due to
CuboidMM. For the third type N × 1K × N , only DistME(C)
can perform matrix multiplication when N = 500K . SciDB
and ScaLAPACK fail due to O.O.M. In fact, they easily fail for
large-scale matrix multiplication since they keep all blocks
of a local matrix as a single array in main memory.

7 RELATEDWORK
Matrix multiplication methods: SUMMA [34] is a dis-
tributed matrix multiplication method widely used in the
High Performance Computing (HPC) environment. It par-
titions the 3-dimensional model as CuboidMM performs
(1,Q,R)-cuboid partitioning. If we let the number of ma-
chines beM , SUMMA performs partitioning such that P ×Q
is equal to Tc ×M . It is known that this approach has rela-
tively a low communication cost in the matrix repartition
step, but relatively a high communication cost in the matrix
aggregation step [19]. It is implemented in a library for the
HPC environment, called ScaLAPACK [12].

The method used in Marlin [19], called CRMM, is the same
as the RMM method in principle. However, instead of using
“physical” blocks as they are, CRMM forms bigger “logical”
blocks by the shuffle and performs matrix multiplication us-
ing those bigger blocks so as to reduce the communication
cost. In Table 2, the communication cost of the RMMmethod
decreases when I , J , and K become smaller by using bigger
blocks. However, those bigger blocks are cubes, and so, can-
not achieve the minimum communication cost as cuboids
of CuboidMM can. In addition, the shuffle step for forming
bigger blocks increases the communication cost.

Matrix computation systems: There have been pro-
posed a number of large-scale matrix computation systems.
They can be classified into two categories: the systems based
on MapReduce and the systems not based on MapReduce.
The former systems include SystemML [6, 18], DMac [37],
Mahout [29], HAMA [30], MatFast [38], and SimSQL [17, 24,

25]. HAMA and Mahout focus on providing the libraries for
machine learning based on matrix computations, which are
implemented using MapReduce. They provide a number of
machine learning algorithms, but it is difficult for users to
implement a new algorithm since MapReduce is a very low-
level interface. SystemML [6, 18] allows users to write a new
algorithm using an R-like high-level declarative interface,
which is translated into a series of MapReduce or Spark jobs.
However, it has relatively a large communication cost since
it uses either BMM, CPMM, or RMM as a distributed matrix
multiplication method. Both DMac [37] and MatFast [38]
exploit matrix dependencies for a complex query like GNMF
to reduce the overall communication overhead. They store
an output matrix using the partitioning scheme (e.g., Row,
Column) that can reduce the communication cost in the ma-
trix repartition step for the next matrix operator in the plan
of the query. SimSQL supports linear algebra computation
through a SQL-like declarative language, called BUDS, based
on Apache Hadoop [2]. SimSQL uses either BMM or CPMM
as a matrix multiplication method.

The latter systems include SciDB [8, 31] and MORPHEUS
[10, 33]. SciDB focuses on managing multidimensional ar-
ray data. For distributed matrix multiplication, it uses the
ScaLAPACK [12] library. Both SciDB and ScaLAPACK uti-
lizes MPI communication. SciDB may have extra commu-
nication overhead before matrix multiplication since the
input matrices should be repartitioned depending on the
partitioning scheme required by ScaLAPACK. MORPHEUS
automatically factorizes ML algorithms to linear algebra op-
erators and then executes the operators over the platforms
that can support linear algebra operators such as R [28].

8 CONCLUSIONS
In this paper, we have proposed a distributed matrix mul-
tiplication method called CuboidMM that performs the op-
timal cuboid partitioning for given input matrices elasti-
cally. CuboidMM can achieve the lowest communication cost
with a given constraint on memory usage per task. As a re-
sult, it significantly outperforms the existing methods, BMM,
CPMM, and RMM, in terms of both performance and scal-
ability. We also have proposed a GPU acceleration method
of matrix multiplication that can be seamlessly combined
with CuboidMM. We have implemented a matrix computa-
tion system called DistME by integrating CuboidMM and the
GPU acceleration method on top of Spark. It significantly
outperforms the existing systems such as SystemML, Mat-
Fast, and DMac in terms of both performance and scalability.
As future work, we will extend our GPU acceleration method
to exploit multiple GPUs per node and to achieve a better
load balancing by considering differences in sparsities of
cuboids, which may further improve the performance.

ACKNOWLEDGMENTS
This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea govern-
ment (MSIT) (No. 2018R1A5A1060031), Basic Science Research
Program through the National Research Foundation of Ko-
rea (NRF) funded by the Ministry of Science, ICT and Future
Planning (2017R1E1A1A01077630), and Institute for Informa-
tion communications Technology Promotion (IITP) grant
funded by the Korea government (MSIT) (R7124-16-0004, De-
velopment of Intelligent Interaction Technology Based on
Context Awareness and Human Intention Understanding).

REFERENCES
[1] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra,

J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, et al. 1999.
LAPACK Users’ guide. SIAM.

[2] Apache. 2011. Hadoop. Retrieved May 2, 2018 from http://hadoop.
apache.org/

[3] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng,
T. Kaftan, M. J. Franklin, A. Ghodsi, et al. 2015. Spark sql: Relational
data processing in spark. In SIGMOD. ACM, 1383–1394.

[4] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatow-
icz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, et al. 2009. A view
of the parallel computing landscape. Commun. ACM 52, 10 (2009),
56–67.

[5] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y. Tian.
2010. A comparison of join algorithms for log processing in mapreduce.
In SIGMOD. ACM, 975–986.

[6] M. Boehm, M. W. Dusenberry, D. Eriksson, A. V. Evfimievski, F. M.
Manshadi, N. Pansare, B. Reinwald, F. R. Reiss, P. Sen, A. C. Surve, et al.
2016. SystemML: Declarative machine learning on spark. VLDB 9, 13
(2016), 1425–1436.

[7] A. Brodtkorb, T. R Hagen, and Martin L Sæ. 2013. Graphics processing
unit (GPU) programming strategies and trends in GPU computing. J.
Parallel and Distrib. Comput. 73, 1 (2013), 4–13.

[8] P. G. Brown. 2010. Overview of SciDB: large scale array storage,
processing and analysis. In SIGMOD. ACM, 963–968.

[9] U. Catalyurek and C. Aykanat. 2001. A hypergraph-partitioning ap-
proach for coarse-grain decomposition. In SC. ACM, 28–28.

[10] L. Chen, A. Kumar, J. Naughton, and J. M. Patel. 2017. Towards linear
algebra over normalized data. Proceedings of the VLDB Endowment 10,
11 (2017), 1214–1225.

[11] S. Chetlur, C.Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer. 2014. cudnn: Efficient primitives for deep learning.
arXiv preprint arXiv:1410.0759 (2014).

[12] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. 1992. ScaLAPACK:
A scalable linear algebra library for distributed memory concurrent
computers. In Frontiers of Massively Parallel Computation, 1992., Fourth
Symposium on the. IEEE, 120–127.

[13] NVIDIA Corporation. 2012. Nvidia Multi-Process Service. Retrieved
May 2, 2018 from https://docs.nvidia.com/deploy/mps/index.html

[14] NVIDIA Corporation. 2015. cuBLAS. Retrieved May 2, 2018 from
https://docs.nvidia.com/cuda/cublas/index.html

[15] T. A. Davis. 2006. Direct methods for sparse linear systems. Vol. 2. Siam.
[16] J. Demmel, D. Eliahu, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz, and O.

Spillinger. 2013. Communication-optimal parallel recursive rectangu-
lar matrix multiplication. In IPDPS. IEEE, 261–272.

[17] Z. J. Gao, S. Luo, L. L. Perez, and C. Jermaine. 2017. The BUDS Language
for Distributed Bayesian Machine Learning. In ICDE. ACM, 961–976.

[18] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald, V. Sindhwani,
S. Tatikonda, Y. Tian, and S. Vaithyanathan. 2011. SystemML: Declara-
tive machine learning on MapReduce. In ICDE. IEEE, 231–242.

[19] R. Gu, Y. Tang, C. Tian, H. Zhou, G. Li, X. Zheng, and Y. Huang. 2017. Im-
proving Execution Concurrency of Large-Scale Matrix Multiplication
on Distributed Data-Parallel Platforms. TPDS 28, 9 (2017), 2539–2552.

[20] F. M. Harper and J. A. Konstan. 2016. The movielens datasets: History
and context. ACM TIIS 5, 4 (2016), 19.

[21] M. Kabiljo and A. Ilic. 2015. Recommending items tomore than a billion
people. Retrieved May 2, 2018 from https://code.fb.com/core-data/
recommending-items-to-more-than-a-billion-people

[22] M.-S. Kim, K. An, H. Park, H. Seo, and J. Kim. 2016. GTS: A fast and
scalable graph processing method based on streaming topology to
GPUs. In SIGMOD. ACM, 447–461.

[23] D. D. Lee and H. S. Seung. 2001. Algorithms for non-negative matrix
factorization. In NIPS. 556–562.

[24] S. Luo, Z. Gao, M. Gubanov, L. L. Perez, and C. Jermaine. 2018. Scalable
linear algebra on a relational database system. IEEE TKDE (2018).

[25] S. Luo, Z. J. Gao, M. Gubanov, L. L. Perez, and C. Jermaine. 2017.
Scalable Linear Algebra on a Relational Database System. In ICDE.
IEEE, 523–534.

[26] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J.
Freeman, D. B. Tsai, M. Amde, S. Owen, et al. 2016. Mllib: Machine
learning in apache spark. JMLR 17, 1 (2016), 1235–1241.

[27] M. Naumov, LS. Chien, P. Vandermersch, and U. Kapasi. 2010. cuS-
PARSE library. In GPU Technology Conference.

[28] R Core Team. 2014. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria.
http://www.R-project.org/

[29] S. Schelter, A. Palumbo, S. Quinn, S. Marthi, and A. Musselman. 2016.
Samsara: Declarative machine learning on distributed dataflow sys-
tems. In NIPS Workshop MLSystems.

[30] S. Seo, E. J. Yoon, J. Kim, S. Jin, J.-S. Kim, and S. Maeng. 2010. Hama:
An efficient matrix computation with the mapreduce framework. In
CloudCom. IEEE, 721–726.

[31] M. Stonebraker, P. Brown, A. Poliakov, and S. Raman. 2011. The
architecture of SciDB. In SSDBM. Springer, 1–16.

[32] MKL Development Team. 2015. Intel math kernel library developer
reference. Retrieved Oct, 2018 from https://software.intel.com/en-us/
articles/mkl-reference-manual

[33] A. Thomas and A. Kumar. 2018. A comparative evaluation of systems
for scalable linear algebra-based analytics. Proceedings of the VLDB
Endowment 11, 13 (2018), 2168–2182.

[34] R. A. Van De Geijn and J. Watts. 1997. SUMMA: Scalable universal
matrix multiplication algorithm. Concurrency: Practice and Experience
9, 4 (1997), 255–274.

[35] R. C. Whaley and J. J. Dongarra. 1998. Automatically tuned linear
algebra software. In SC. IEEE, 38–38.

[36] Y. Yan, M. Grossman, and V. Sarkar. 2009. JCUDA: A programmer-
friendly interface for accelerating Java programs with CUDA. In Euro-
Par. Springer, 887–899.

[37] L. Yu, Y. Shao, and B. Cui. 2015. Exploiting matrix dependency for
efficient distributed matrix computation. In SIGMOD. ACM, 93–105.

[38] Y. Yu, M. Tang, W. G. Aref, Q. M. Malluhi, M. M. Abbas, and M. Ouzzani.
2017. In-Memory Distributed Matrix Computation Processing and
Optimization. In ICDE. IEEE, 1047–1058.

[39] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica. 2012. Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing. In NSDI.
USENIX Association, 2–2.

[40] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X.
Meng, J. Rosen, S. Venkataraman, M. J. Franklin, et al. 2016. Apache

http://hadoop.apache.org/
http://hadoop.apache.org/
https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/cuda/cublas/index.html
https://code.fb.com/core-data/recommending-items-to-more-than-a-billion-people
https://code.fb.com/core-data/recommending-items-to-more-than-a-billion-people
http://www.R-project.org/
https://software.intel.com/en-us/articles/mkl-reference-manual
https://software.intel.com/en-us/articles/mkl-reference-manual

spark: a unified engine for big data processing. Commun. ACM 59, 11
(2016), 56–65.

[41] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. 2008. Large-scale
parallel collaborative filtering for the netflix prize. In ICAAM. Springer,
337–348.

A THE GNMF QUERY
The GNMF query approximates the two factor matrices H
andW for a given matrix V as follows:

Hi+1 =
Hi ∗ (W

T
i ×V)

W T
i ×Wi × Hi

,Wi+1 =
Wi ∗ (V × H

T
i)

Wi × Hi × H
T
i

(7)

where i is the iteration number, ∗ is element-wise multiplica-
tion, × is matrix multiplication, andW T means the transpose
ofW . The initial H andW are generated randomly and are
expressed as H0 andW0. We use the same query plan with
DMac for the GNMF query.

B OPTIMIZATION OF (P,Q,R)
Figure 9 shows the elapsed times and amount of transferred
datawhile varying (P ,Q,R) in CuboidMM for the first dataset
in Table 4, i.e., two general matrices of 70K × 70K × 70K .
CubiodMM determines the optimal parameters as (P∗ =
4,Q∗ = 7,R∗ = 4) for the dataset. Figures 9(a) and (b) show
that using (P∗,Q∗,R∗) achieves the minimum elapsed time
and the minimum amount of transferred data, respectively.
In Figure 9(b), the actual communication cost (in green bars)

and Cost() (in red curve) should be the same theoretically,
but they are slightly different, due to the serialization and
deserialization used during data shuffle.

237
232

223
206

215

232
239

244 243

232

220

232
239 240

269 266
256

232
243

251 255

200

250

300

(10,4) (8,4) (6,4) (4,4) (4,5) (4,6) (4,7)

El
ap

se
d

tim
e

(s
ec

)

parameters (P, R)

Q = 7 Q = 10 Q = 14

5.6
4.7

2.5
1.7 2.1

4.4
5.5

61.25

56.35

51.45

46.55

51.45

56.35

61.25

40

45

50

55

60

0

1

2

3

4

5

6

(10,7,4) (8,7,4) (6,7,4) (4,7,4) (4,7,5) (4,7,6) (4,7,7)

C
os

t()
 (x

 1
09)

Am
ou

nt
 o

f
da

ta
 (G

B)

parameters (P, Q, R)

Amount of transferred data Cost()

(a) Elapsed times while varying (P,Q,R)

(b) Communication cost while varying (P,Q,R)

Figure 9: Optimization of (P,Q,R).

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Matrix Partitioning Schemes
	2.2 Distributed Matrix Multiplication

	3 Cuboid Matrix Multiplication
	3.1 (P,Q,R)-Cuboid partitioning
	3.2 Optimization of CuboidMM

	4 Acceleration of CuboidMM using GPUs
	4.1 Subcuboid partitioning
	4.2 Optimization of subcuboids for GPU
	4.3 GPU streaming of subcuboids
	4.4 Algorithm

	5 Implementation of DistME
	6 Experimental Evaluation
	6.1 Experimental setup
	6.2 Performance of CuboidMM
	6.3 Performance of DistME
	6.4 Performance of GNMF
	6.5 Comparison with Systems in HPC

	7 Related Work
	8 Conclusions
	Acknowledgments
	References
	A The GNMF query
	B Optimization of (P,Q,R)

