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ABSTRACT
Distributed matrix computation is a popular approach for many
large-scale data analysis and machine learning tasks. However ex-
isting distributed matrix computation systems generally incur heavy
communication cost during the runtime, which degrades the overall
performance. In this paper, we propose a novel matrix computation
system, named DMac, which exploits the matrix dependencies in
matrix programs for efficient matrix computation in the distributed
environment. We decompose each matrix program into a sequence
of operations, and reveal the matrix dependencies between opera-
tions in the program. We next design a dependency-oriented cost
model to select an optimal execution strategy for each operation,
and generate a communication efficient execution plan for the ma-
trix computation program. To facilitate the matrix computation in
distributed systems, we further divide the execution plan into multi-
ple un-interleaved stages which can run in a distributed cluster with
efficient local execution strategy on each worker. The DMac sys-
tem has been implemented on a popular general-purpose data pro-
cessing framework, Spark. The experimental results demonstrate
that our techniques can significantly improve the performance of a
wide range of matrix programs.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Distributed systems; D.1.3 [
Programming Techniques]: Concurrent Programming—Distribut-
ed Programming

Keywords
matrix computing; dependency analysis; distributed system

1. INTRODUCTION
Matrix-based computation is one of the most general approaches

for a deep analysis or manipulation of the data at hand. An ar-
ray of machine learning algorithms, such as collaborative filtering,
Cholesky factorization [12], singular value decomposition (SVD)
and LU factorization, are built on top of matrix computation. It is
also true for many data mining algorithms, like Betweeness Cen-
trality [13] and PageRank. Taking account of the importance and
generality of matrix computation, it is natural to develop efficien-
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t execution engines for large-scale matrix computation. Different
distributed matrix computation systems have been proposed recent-
ly, such as SystemML [14, 18], MadLINQ [20], and Mahout [4].

For data processing tasks in the distributed environment, com-
munication cost is generally a key factor of the overall performance
and may become a bottleneck of the system execution. In MadLIN-
Q [20], the matrix computation algorithms are expressed as sequen-
tial programs operating on tiles (i.e., sub-matrices) and executed on
DryadLINQ [22]. SystemML [14, 18], which is the latest distribut-
ed matrix computation system, expresses machine learning algo-
rithms (i.e., matrix computation) in an R-like high-level language
and executes them in the MapReduce framework [11]. It produces
an execution plan via the piggybacking algorithm which considers
the characteristics of operations and matrices separately. In these
systems, the matrix computation generally incurs expensive repar-
tition phases to redistribute the matrix, which brings in heavy com-
munication cost and makes the matrix computation still expensive
in distributed systems.

By examining the matrix computation processing in the distribut-
ed environment, we observe the operations in a matrix program
have specific requirements for the distribution of input matrices in
the system. The matrix operations in the program may access some
matrices successively, i.e., the input matrix of an operation can be
the output of its preceding operation. We call it “matrix dependen-
cy" in the matrix program. When the requirements and the partition
schemes of the matrices are inconsistent, an expensive repartition
phase is needed. The following code segment describes a represen-
tative example to clarify the problem. Code 1 is an illustration of
the popular ML algorithm Gaussian Non-Negative Matrix Factor-
ization [16] (GNMF). GNMF is an algorithm for finding two factor
matrices, W and H , such that V ≈ WH .

1 val max_iteration = 10
2
3 // load the matrices
4 val V = load(path = ...)
5 val (W, H) = (RandomMatrix, RandomMatrix)
6
7 // iteratively update W and H
8 for ( i <- 0 until max_iteration) {
9 H = H * (W.t %*% V) / (W.t %*% W %*% H)

10 W = W * (V %*% H.t) / (W %*% H %*% H.t)
11 }

Code 1: GNMF algorithm in Scala

In GNMF, we can see there exist matrix dependencies during the
matrix computation. First, when computing the multiplication 1 of

1Multiplication is represented by %*%, while cell-wise multiplica-
tion is represented as *.
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W.t and W for H in the ith iteration, the matrices W.t2 and W are
dependent on the results from the previous iteration. SystemML
simply maintains the matrix W with hash partition scheme which
is not suitable for the multiplication operation, therefore a reparti-
tion phase is required before the real computation. This is also true
for computing H%∗%H.t. Second, even if the partition scheme of
W from the previous iteration meets the requirement, SystemML
needs to repartition it for W.t as well. Actually, being aware of the
dependency between W and W.t, the two matrices can be mutu-
ally transformed without communication. Therefore, by analyzing
the matrix dependency in the program and eliminating the incon-
sistency, we can reduce the number of communication operations
and improve the overall performance. However, the existing sys-
tems ignore such matrix dependency information in the program,
and hence lose the optimization opportunity for communication.

In this paper, we propose a new matrix computation system,
named DMac, which novelly exploits the matrix dependency dur-
ing the matrix computation to reduce the communication cost in
the distributed environment. We integrate partition schemes in-
to the matrix dependency analysis and show the effect of various
dependencies on the communication. By utilizing the dependen-
cy information, we build a cost model to select execution strate-
gies for matrix operators, and design a plan generation algorithm
to construct a communication efficient execution plan for the w-
hole matrix computation job. Once the plan is generated, DMac
divides the plan into some un-interleaved stages by merging all op-
erations without communication into a single stage, which are exe-
cuted across a distributed cluster. Furthermore, each worker uses a
block-based approach for efficient local matrix computation to im-
prove the local performance. We have implemented the prototype
of DMac on Spark [23] and conduct comprehensive experiments
on various matrix based applications.

In summary, the main contributions of our work are listed as
follows.

1. We develop a new matrix computation system (DMac) for
efficient matrix computation in the distributed environment.

2. We propose to exploit the matrix dependency in a matrix pro-
gram to reduce the communication cost. To the best of our
knowledge, we are the first to propose the concept of matrix
dependency and show its benefit in distributed matrix com-
putation.

3. We design a cost-model based algorithm to generate com-
munication efficient execution plans for matrix computation
tasks.

4. We implement a prototype DMac system, and conduct ex-
tensive empirical studies on various matrix programs. The
experimental results demonstrate the superiority of our ap-
proach compared with the existing methods.

The remainder of the paper is organized as follows. Section 2
presents the overview of DMac system. The definition of matrix
dependency and its analysis are described in Section 3. We present
the algorithm to generate the execution plan in Section 4. Section 5
depicts the deployment of DMac in a distributed cluster and its im-
plementation on Spark. The experimental results are presented in
Section 6. Section 7 introduces the related work, and finally we
conclude the work in Section 8.

2. OVERVIEW OF DMAC
DMac is a distributed matrix computation system. The high-

level architecture of DMac is shown in Figure 1. For each submit-
ted matrix program, the plan generator in DMac is responsible to
2WT and W.t are used interchangeably.
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Figure 1: Architecture of DMac
create a communication efficient execution plan for the matrix com-
putation task. The plan is next scheduled with a sequence of stages,
making that the operations in each stage can run without any com-
munication. Each stage is distributively executed in a cluster with
a set of workers. To execute matrix operations efficiently at each
worker locally, a block-based approach which can fully exploit the
parallelism of modern machine is applied.

As we introduced previously, the communication cost is a ma-
jor factor of the performance for distributed matrix computation.
Therefore, the key issue of the system is how to construct a commu-
nication efficient execution plan in our system design. Once a user
submits a matrix program to DMac, the dependency analyzer in
plan generator first decomposes the program into a sequence of op-
erations along with analyzing the matrix dependencies, which con-
tains the information about how the operations refer to the output
matrices of their preceding operations. Because various partition
schemes can be applied for one matrix, each operation has many
alternative execution strategies which specify the partition scheme
requirements of the corresponding operation. The optimizer in D-
Mac helps select the optimal execution strategy for each operation
based on the dependency-oriented cost model. The overall execu-
tion plan can be generated after each operation’s execution strategy
is determined. In the next two sections, we will present the novel
concept of matrix dependency, and show how to generate the com-
munication efficient execution plan by exploiting the dependency.

3. MATRIX DEPENDENCY
In this section, we give a formalized definition of matrix depen-

dency, and analyse its effect on the communication of matrix com-
putation. The traditional definition of data dependency is a situation
in which a program statement refers to the data of a preceding s-
tatement. By investigating the matrix program, we observe that the
operators in the program may access some matrices successively,
i.e., there does exist kinds of “dependency" between different ma-
trix operators. In the distributed environment, the situation could
be more complicated since each matrix operator is associated with
a partition scheme of input/output matrices and there exist multiple
execution strategies for each operator. Therefore, the system has to
effectively utilize the dependencies between operators to choose an
efficient execution strategy for each operator.

3.1 Preliminaries
Before introducing the dependency definition in matrix program,

we describe the notations used to illustrate the dependency and how
the dependency affects the communication of operators. The nota-
tions and their explanations are summarized in Table 1.

94



Notations Description
opi, opj operator in the program

Precede(opi, opj)
opi is performed earlier than opj
in the program.

pi, pj partition scheme of matrix
EqualB(pi, pj) pi and pj are both Broadcast scheme.

EqualRC(pi, pj)
pi and pj are the same, either Row
scheme or Column scheme.

Oppose(pi, pj)
pi is Row scheme while pj is
Column scheme and vice verse.

Contain(pi, pj)
pi is Broadcast scheme while pj is
either Row scheme or Column scheme.

In(A, pi, opi) opi requires matrix A with pi as input.
Out(A, pi, opi) opi generates matrix A with pi.

Table 1: Related notations for matrix dependency
• Operator: As we introduced previously, the matrix compu-

tation task can be decomposed into a sequence of operations
in the execution, each of which corresponds to an operator.
There are five binary operators suppported in DMac, includ-
ing multiplication, addition, substraction, cell-wise multipli-
cation and cell-wise division. Furthermore, unary operator
between a constant and a matrix is also supported.

• Partition scheme: In a matrix program, each matrix is as-
sociated with a partition scheme. DMac adopts three parti-
tion schemes, which are Row scheme, Column scheme and
Broadcast scheme. Row/Column scheme, denoted as r/c,
partitions the elements belonging to the same row/column in-
to the same partition. Broadcast scheme, denoted as b, gen-
erates a replica of every element at each partition. Note that
Broadcast is not a partitioning method, but it can indicate the
data placement information in the cluster, which is similar to
row/column partition scheme. For the ease of representation,
we regard Broadcast as a kind of partition scheme. These
three partition schemes are sufficient for all the matrix oper-
ations, since the partition schemes for the output matrix of
the operations must be one of them. The partition schemes
adopted by DMac are one-dimensional partitioning methods,
which can reduce the number of shuffle operations for the op-
erators supported in DMac. The two-dimensional partition-
ing methods, such as chunk-based [8] and block-cyclic [5],
have their own merits to process some other matrix operators
but with more computation stages, which will be investigat-
ed in future work. Furthermore, we define four constraints
between two partition schemes which are EqualB(pi, pj),
EqualRC(pi, pj), Oppose(pi, pj) and Contain(pi, pj).

• Event: An event is an input (output) process of reading (writ-
ing) a single matrix by an operator. In(A, pi, opi) is an input
event and Out(A, pi, opi) is an output event. The event no-
tation will help us properly capture the dependency between
dependent operators.

3.2 Dependency Definition
We proceed to give the formalized definition of matrix dependen-

cy, which implies whether the operator refers to the output matrix
of a preceding operator.

DEFINITION 1 (MATRIX DEPENDENCY). An input event
In(B, pj , opj) is dependent on an output event Out(A, pi, opi) if
B = A or B = AT , and Precede(opi, opj) holds. This depen-
dency between In(B, pj , opj) and Out(A, pi, opi) is called Ma-
trix Dependency.

Matrix dependency reveals the relationship between the input
event and output event of two matrix operators. By considering

the partition schemes of matrices A and B and the relationship be-
tween them, there exist 18 combinations between Out(A, pi, opi)
and In(B, pj , opj) . Each combination requires a matrix process
to make the partition scheme of A satisfy the demand of B. We
analyse these combinations and find that actually eight different
matrix processes are sufficient. Thereby, we classify the matrix de-
pendencies into eight types corresponding to the matrix processes,
and use the matrix process as the name of dependency type. Table
2 lists the specific conditions for each type of matrix dependency
and the dependency type column contains the corresponding names
of the matrix process.

We further check whether the matrix dependency will introduce
communication cost, since it is a critical issue for us to select an
optimal execution strategy for each operator. It is clear some ma-
trix processes need to repartition the matrix, and hence incur the
communication in the cluster, while the others do not. Therefore,
we divide eight types of dependencies into two categories, and give
the detailed analysis as follows.

Dependency with Communication Cost
If the dependency incurs communication cost for matrix process-
ing, it belongs to the Communication Dependency category. There
exist four types of matrix dependencies in this category.

1. Partition Dependency: It depicts the scenario where the
partition scheme required by opj is opposed with the par-
tition scheme generated by opi on the same matrix. Thus,
a repartition step is needed to eliminate the inconsistency of
partition schemes between opi and opj . Clearly, the repar-
tition of the matrix will introduce the communication in the
distributed environment.

2. Transpose-Partition Dependency: It appears when B =
AT and both pi and pj are Row scheme or Column scheme.
To fulfill the requirement of this dependency, a transpose op-
eration is first applied and a repartition step is also needed to
change the partition scheme. Therefore, communication cost
is induced.

3. Broadcast Dependency: It means that opi generates matrix
A with a Row or Column partition scheme while opj re-
quires a Broadcast scheme of the input matrix. In this situ-
ation, repartition is needed to broadcast A across the cluster,
and hence the communication is needed.

4. Transpose-Broadcast Dependency: When B = AT and
Contain(pj , pi), a matrix transpose process and a broadcast
step are required to satisfy this dependency, thus communi-
cation happens.

Dependency without Communication Cost
If the dependency will not incur any communication cost, we clas-
sify it in the Non-Communication Dependency category.

1. Reference Dependency: It exists when the matrix generated
by opi and its partition scheme exactly satisfy the input re-
quirement of opj . No communication cost will be introduced
since opj can directly use the data generated by opi without
a repartition step.

2. Transpose Dependency: If B = AT and Oppose(pi, pj)
or both pi, pj are Broadcast scheme, a local transpose oper-
ation can satisfy the requirement of this dependency, i.e., no
communication is needed.

3. Extract Dependency: It depicts that opi generates a Broad-
cast scheme of matrix while opj requires a Row scheme or
Column scheme. Thus, opj can obtain the required scheme
through an extract operation on the data generated by opi.
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Events Conditions Dependency Type Communication

Out(A, pi, opi) / In(B, pj , opj)

A = B && Oppose(pi, pj) Partition Yes
A = BT && EqualRC(pi, pj) Transpose-Partition Yes
A = B && Contain(pj , pi) Broadcast Yes
A = BT && Contain(pj , pi) Transpose-Broadcast Yes

A = B && (EqualRC(pi, pj) || EqualB(pi, pj)) Reference No
A = BT && (Oppose(pi, pj) || EqualB(pi, pj)) Transpose No

A = B && Contain(pi, pj) Extract No
A = BT && Contain(pi, pj) Extract-Transpose No

Table 2: Description of the eight types of matrix dependencies
This extract operation can be conducted locally on the work-
ers and no communication operation is invoked.

4. Extract-Transpose Dependency: It exists when B = AT

and Contain(pi, pj). Thus, opj can obtain the required
scheme through a local extract operation and a following
transpose operation. Both operations will not introduce com-
munication cost.

The communication analysis of different matrix dependencies
enables us to select an efficient execution strategy for the opera-
tions in the matrix program, which facilitates the generation of a
communication efficient execution plan of the matrix computation
task.

4. PLAN GENERATION
Given a matrix program, DMac decomposes it into a sequence

of matrix operators. For each operator, a dependency oriented cost
model is utilized to select the execution strategy with the minimum
communication. The detailed algorithm of generating the execution
plan is described in Section 4.2.

4.1 Dependency-Oriented Cost Model
By considering the matrix dependencies between operators’ events,

a cost model is utilized to find a strategy with the minimum commu-
nication cost for each matrix operator. ∀ opi, Si = {si0, si1, ..., sin}
represents the candidate execution strategies for opi. For 0 ≤ k ≤
n, the input event set and the output event of sik are denoted as
ISik and outik respectively. Note that, for each execution strategy
of an operator, there are only one output event and at most two in-
put events. Then the communication cost introduced by sik can be
obtained by the following equation:

Cost(sik) =
∑

in∈ISik

Cost(in) + Cost(outik)

The total communication cost of sik is the summation of cost-
s introduced by all the input events and output event inside sik.
In DMac, strategy choosing for matrix operators is conducted in
the program order. Given a matrix operator opi, let OutputSet
indicate the set of output events from those strategies which are s-
elected for the operators ahead of opi. Considering an input event
In(A, pi, opi) from an execution strategy sik, if there exists an out-
put event Out(B, pj , opj) ∈ OutputSet such that In(A, pi, opi)
is dependent on Out(B, pj , opj), the matrix dependency dep be-
tween these two events only needs to be analyzed in three situation-
s.

1: dep belongs to Non-Communication Dependency category.
2: dep is either Partition or Transpose-Partition dependency.
3: dep is either Broadcast or Transpose-Broadcast dependency.

In Situation 1, no communication cost will be introduced by
In(A, pi, opi); while communication is required in Situation 2 and
Situation 3. Therefore, the communication cost of In(A, pi, opi)
can be derived as follows:

Cost(In(A, pi, opi)) =

{
0 Situation 1
|A| Situation 2
N × |A| Situation 3

Here, N is the number of nodes in the cluster, and |A| is the size
of matrix A which can be derived through a worst-case estimation
method. The detail description of this method is presented in Sec-
tion 5.1. Note that, the matrix size may vary if we apply matrix
compression techniques for sparse matrix in the real implementa-
tion; however, it will not affect the analysis here.

A(b) B(c)

AB (c)

A(r) B(b)

AB (r)

A(c) B(r)

AB (r|c)

RMM1 RMM2 CPMM

Figure 2: Execution strategies for multiplication. A(p) is the
matrix A with partition scheme p.

The cost of each input event can be directly derived by the depen-
dency type between it and its dependent output event. However, the
cost of an output event can be different with respect to the select-
ed operator execution strategy, specifically for matrix multiplica-
tion operation. For example, there are three execution strategies for
matrix multiplication [14], called Replication based Matrix Multi-
plication (RMM1, RMM2) and cross-product matrix multiplication
(CPMM). The details of three strategies are specified in Figure 2. In
these execution strategies, CPMM introduces communication cost
during its execution while there is no communication cost for the
other two strategies. We use the cost of an output event to repre-
sent the communication cost introduced during the execution of a
certain strategy.

The communication cost for an output event Out(A, pi, opi) of
sik can be obtained by the following equation:

Cost(Out(A, pi, opi)) =

{
N × |A| if sik is CPMM

0 otherwise

When the execution strategy is CPMM, the communication cost is
N × |A|. The cost of the output event of other strategies is zero.

According to the cost analysis above, an execution strategy with
the minimum communication cost for matrix operator opi can be
chosen from the following equation:

si = arg min
s∈Si

Cost(s) (1)

4.2 Algorithm of Execution Plan Generation
The plan generation for a matrix program can be considered as a

problem of choosing a strategy for each matrix operator such that
the total communication of all the strategies is minimized. In D-
Mac, we first decompose the matrix program into a sequence of
matrix operators. For each operator, an execution strategy is chosen
to perform the computation. To express the matrix dependencies in
the program, DMac provides five extended operators. Furthermore,
we propose two heuristic rules in the algorithm design to optimize
the communication cost of execution plan.
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4.2.1 Extended Operators
To express the dependencies in the matrix program and construct

the execution plan, DMac extends the original matrix operators by
adding five new operators, including partition, broadcast,
transpose, reference and extract.

The partition operator performs a repartition step to change
any partition scheme to Row scheme or Column scheme. The
broadcast is responsible to change a partition scheme to Broad-
cast scheme by replicating the local partition to other computing
nodes. These two operators can be used to represent the dependen-
cies with communication

Dependencies without communication cost are represented by
reference, transpose and extract. The reference op-
erator is a null operation only for representing the Reference de-
pendency and is applied when pi in In(A, pi, opi) is same as pj in
Out(A, pj , opj). The transpose operator will generate a trans-
pose version of a matrix with complementary partition scheme only
by local operations. The extract operator is corresponding to the
inconsistency between Broadcast scheme and other two schemes.
It generates Row scheme or Column scheme through performing
a filter step at local.

4.2.2 Heuristic Methods
Through analysing the operator sequence and its matrix depen-

dencies, we observe the matrix broadcast and matrix dependency
with repartition requirement are the major reasons incurring the
communication. Our algorithm applies two heuristic methods to
reduce the communication in the matrix computation, named Pull-
Up Broadcast and Re-assignment. The description of these two
methods are specified as follows.

HEURISTIC 1. (Pull-Up Broadcast) If two input events In(A, pi,
opi), In(B, pj , opj) satisfy the following conditions, B = A or
B = AT , Contain(pj , pi), Precede(opi, opj) and Cost(In(A, pi,
opi)) > 0, Cost(In(B, pj , opj)) > 0, then add an output event
Out(A, b, opi).

When the conditions specified above are satisfied, we can ob-
serve that these two input events both introduce communication
cost. The cost from In(A, pi, opi) is produced by the repartition
step for generating a Row scheme or Column scheme of A. The
other cost from In(B, pj , opj) is brought in by a broadcast step.
The communication cost generated by In(A, pi, opi) can be elimi-
nated once opj is performed before opi. Hence, we broadcast A in
advance.

HEURISTIC 2. (Re-assignment) In case that In(A, pi, opi) is
dependent on Out(B, pj , opj) and Cost(In(A, pi, opi)) > 0, if
pj has multiple values, we re-assign pj to the value with minimum
Cost(In(A, pi, opi)).

Some strategies can generate an output event, Out(B, pj , opj),
with multiple partition schemes, such as the CPMM strategy. Fur-
thermore, when multiplying two matrices with the same size, like
BBT , RMM1 and RMM2 can generated result matrix with differ-
ent partition scheme while introducing the same amount of commu-
nication cost. If there is a following input event, In(A, pi, opi), be-
ing dependent on Out(B, pj , opj), the value of pj should be care-
fully chosen to construct Non-Communication Dependency between
these two events. DMac re-assigns the value of pj if In(A, pi, opi)
introduces communication cost.

4.2.3 Algorithm Description
Algorithm 1 depicts the logic of the plan generation algorithm.

We first initialize an OutputSet and an InputSet which will be

Algorithm 1 generating execution plan
Input: matrix program P
1: OutputSet← Φ, InputSet← Φ
2: Plan← Φ
3: Matrix Operator List← P
4: foreach opi in Matrix Operator List do
5: Si ← candidate execution strategy set for opi
6:
7: /* select a strategy for opi*/
8: si ← argmins∈Si Cost(s)
9:

10: foreach In(A, pi, opi) in si.getInput do
11: if Cost(In(A, pi, opi)) > 0 then
12: if Re-Assignment satisfies then
13: perform Re-Assignment
14: else
15: if Pull-Up Broadcast satisfies then
16: perform Pull-Up Broadcast
17: end if
18: else
19: OutputSet.add(Out(A, pi, opi))
20: end if
21: end if
22: InputSet.add(Input(A, pi, opi))
23: add dependency introduced by In(A, pi, opi) into Plan
24: end foreach
25: add opi into Plan
26: end foreach
27: return Plan

used to store the generated input events and output events. An emp-
ty plan is also created.

In Line 3, we decompose the given matrix program into a se-
quence of matrix operators. At this decomposing phase, if there are
multiple operators can be executed simultaneously, we put the oper-
ators with multiplication ahead of the other operators because ma-
trices will be probably broadcasted by multiplication. According
to Heuristic 1, a pull-up broadcast operation can benefit communi-
cation. For each matrix operator, we select the execution strategy
with the minimum communication cost according to the current
OutputSet and Equation 1 (Lines 4-8).

If an input event introduces communication cost, we utilize Heuris-
tic 1 and Heuristic 2 to reduce the communication cost at Lines 12-
17. If the communication cost of an input event cannot be avoided,
a repartition step will be performed during the execution to fulfill
the requirement of this input event. To decrease the communication
cost produced in the following operators, we add an output event
into the OutputSet, as it is described at Line 19. Each input event
generated by si is added into the InputSet at Line 22, which can
help the successive operators to apply the Pull-Up Broadcast rule.
We then add the dependency generated by the selected strategy into
the plan at Line 23. In our plan, dependency is represented with the
extended operators.

In the end of outer for loop, opi is added into the plan at Line 25.
Thereby, the execution plan for the whole matrix program is gen-
erated, which consists of the original matrix operations and some
helpful dependency operators.

4.2.4 An Example of Generated Execution Plan
Figure 3 shows the execution plan generated by DMac for the

first iteration phase of GNMF (Code 1). The plan is represented by
a direct acyclic graph (DAG) where nodes are matrices and edges s-
tand for operators. Each matrix, represented as an ellipse in the fig-
ure, is associated with its distributed data layout information. For
example, H1(c) is the input matrix H applying a column scheme
and W1(b) means that W1 is broadcast to all computing nodes.
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Figure 3: Execution plan for GNMF. The dashed blue arrow means local operation.

Thus the plan gives us an intuitive perspective about how each (in-
termediate) matrix is partitioned among the cluster. The matrix
dependencies are represented by the extended operators introduced
in Section 4.2.1. These operators help simplify the representations
of various dependencies in a matrix program and distinguish them
clearly. We give a brief description for the process of the first 5
operators in the plan as follows.

The first operator is W.t% ∗% V . Since WTV is larger than
WT , the strategy with the minimum communication cost is to get
a broadcast scheme of WT and perform multiplication with a Col-
umn scheme of V . Thus, WT (b) is generated from a broadcast
operator and a transpose operator. A Column scheme of WTV ,
denoted as WTV (c) in Figure 3, is generated.

The following operator is W.t % ∗% W , the strategy with the
minimum communication cost is CPMM. The two input events of
CPMM are In(W, r) and In(WT , c), which can be obtained from
WT (b) according to Extract-Transpose dependency and Extract
dependency. The output of CPMM can generate multiple partition
schemes for WTW .

The following operator is WTW % ∗ % H . Since WTW is a
tiny matrix, the strategy chosen is to broadcast WTW and perfor-
m multiplication with a Column scheme of H . Thus, H(c) and
WTW (b) are generated. The output of this operator is WTWH
with the Column scheme, which is WTWH(c).

The next operation is H ∗ WTV . H(c) and WTV (c) have
been generated by the preceding operators. Thus, the strategy cho-
sen here is to perform the cell-wise multiplication on H(c) and
WTV (c), which will not introduce any communication cost. The
output of this operator is denoted as X and its partition scheme is
Column scheme.

The following operator is X / WTWH . Since both matrices
generated from preceding operators are associated with Column
scheme, the strategy with minimal cost here is a cell-wise division
on X(c) and WTWH(c). The communication cost of this opera-
tor is zero.

After the process of the above operators, the first H computation
in Code 1 (Line 9) is finished and the following operators will be
executed in the similar way.

5. PLAN EXECUTION AND SYSTEM IM-
PLEMENTATION

In this section, we will describe the matrix size estimation method
and how the generated plan is executed in the distributed environ-
ment. Since the matrix operations, like multiplication, are also
cpu-intensive tasks, providing an efficient execution process in the
cluster is not a trivial task. We first introduce the scheduling of exe-
cution plan, followed by the execution flow inside each computing

node. The implementation of DMac on the Spark platform will be
also presented.

5.1 Worst-Case Matrix Estimation
The characteristics of each matrix is the key feature and it is u-

tilized by the dependency-oriented cost model in DMac. To derive
the size of each matrix, a worst-case estimate method is employed.
There are two important features needed to infer the size of a ma-
trix. One is the dimension of matrix and the other is the sparsity.
The dimension of each matrix can be exactly inferred for many
linear algebra operators (e.g., matrix multiplication and addition).
Inferring the sparsity, however, is more difficult due to the skew of
data. In DMac, the sparsity or number of non-zero items of the in-
put matrices can be pre-computed offline or specified by the user.
Then the size of the intermediate matrix is estimated through the
worst-case method.

Unary operators can perseve the sparsity between input and out-
put matrices while binary operators cannot. Considering a binary
matrix operator C = op(A,B), sA, sB are the sparsity of matrix
A,B respectively. Then the sparsity of matrix C, denoted as sC
can be estimated through the following equation:

sC =

{
1 if op is multiplication
Max(sA + sB , 1) otherwise

5.2 Plan Scheduling
Given an execution plan generated by Algorithm 1, DMac first

schedules it into several un-interleaved stages where each stage can
be executed among the cluster without network communication. D-
Mac employs a traverse-based algorithm to find the boundaries be-
tween stages. The result matrix of the matrix computation acts as
the starting point of the traversal. The algorithm traverses the plan
following the matrix dependency. When the traverse encounters a
dependency with communication cost (e.g., partition operator
or broadcast operator) and there is no other matrix dependen-
cies without communication cost that lead to unvisited nodes, the
boundary of current stage is found. As shown in Figure 3, the ex-
ecution plan of the first iteration of GNMF algorithm is divided
into five stages, where the boundaries between stages are either
partition operator or broadcast operator or both.

Each stage is then ran across the cluster. Since network commu-
nication only happens between stages, the computing tasks inside
a stage can be perfectly dispatched to the nodes in the cluster and
executed independently. Every computing node fetches the input
data, which are portions of input matrices, and executes the matrix
operators in this stage. After that, the nodes write the output matrix
to the local disk for later computation.
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5.3 Local Execution on Computing Node
In DMac, a block-based execution strategy is adopted to exploit

the parallelism of multi cores at each computing node. Matrices
are split into sub-matrices called block. All the blocks can be com-
puted in parallel. Note that there are two levels of partitioning in
DMac. First, a given matrix is partitioned into blocks and block
becomes the base computing unit. When performing computation
among cluster, DMac distributes each block based on the partition
scheme to the corresponding computing node and performs the lo-
cal execution independently.

The execution flow inside each computing node is illustrated in
Figure 4. First, according to the logic of local operator, the meta
data of operations which can be executed independently are pack-
aged into a task, and the task is put into a task queue. Each task
will generate a block of the results. Thereafter, multiple threads are
created and each one takes a task from the task queue to execute
independently.

The input blocks of a single computing node reside in the shared
memory, thus they can be read by all the threads. Inside each
thread, an In-Place execution approach is designed for matrix op-
erations to improve the utilization of intra-thread memory. A result
buffer pool is employed for reusing the inter-thread memory. It
maintains a fixed number of blocks in memory. At the beginning of
each task inside a thread, it acquires a clean block from the result
buffer pool. After the task is finished, the block will be returned to
the pool.

In-Place Execution
Usually the matrix operation is also memory-intensive. Take the
matrix multiplication as example, which is the most complex but
common operation in a matrix program. For a matrix A with MA×
NA blocks and a matrix B with MB×NB blocks, the computation
of A % ∗ % B will incur MA × NA × NB times of block multi-
plications. Naively parallelizing these block-based computations
requires a buffer to store all the intermediate results and aggregate
them at last. Such buffer implementation causes expensive memory
consumption.

In DMac, we apply an In-Place based implementation. The In-
Place approach packages the computations (e.g., block multiplica-
tion and aggregation) which contribute to the same result block into
a task. Inside each task, the generated results can be directly updat-
ed into the result block in-place without extra buffer cost. In other
words, no extra memory is needed to allocate the intermediate ma-
trix, and hence reduces the memory cost.

The Choice of Block Size
The size of each block is an important factor and can affect the
overall performance significantly. Generally, the determination of
block size needs to be hand-tuned according to different input and
cluster configuration. DMac automatically determines the size of
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Figure 5: Compress Sparse Column format

each block by making a trade-off between the memory consump-
tion and parallelism.

In order to reduce the memory consumption, DMac always tends
to partition sparse matrix into large blocks. In DMac, sparse block
is represented as the compressed sparse column (CSC) format [10],
while a one-dimensional array is used for dense block. Due to the s-
parsity of the original matrix, most blocks are sparse as well. Figure
5 illustrates the CSC format which needs three arrays to represent
a sparse matrix. The value array stores the non-zero items while
a row index array indicates the row index for each item. The jth

element in the Column Start Index array equals the starting point
in the row index array for column j. For each sparse block b with
m×n size and s sparsity, the consumed memory can be derived as
follows.

Mem(b) =

{
4n+ 8mns :sparse
4mn :dense

When a large matrix is partitioned into multiple blocks, each
block needs a Column Start Index array. Considering an M × N
matrix A with sparsity S, the size of row index array and value
array are both M × N × S regardless of partitioning. However,
the size of Column Start Index array is N before partitioning while
M
m × n after partitioning. The total memory consumption for a
partitioned matrix can be derived from the following equation

Mem(A) =

{
4N M

m + 8MNS :sparse
4MN :dense (2)

Therefore, the storage space for a sparse matrix can be decreased
when each block is in large size.

However, to fully exploit the parallelism, DMac shall ensure that
each thread executes at least one task. According to the character-
istic of In-Place based approach, the number of tasks equals to the
number of result blocks. Investigating the cell-wise matrix opera-
tors, RMM-based matrix multiplication and CPMM-based matrix
multiplication, we can figure out that if matrix A with block size
m is executed among K workers, the number of total tasks on a
worker is at least MN

Km2 which is caused by the RMM-based ma-
trix multiplication. Therefore, the upper bound of row size of each
block can be determined by

m ≤
√

MN
LK

(3)

where L is the local parallelism in a worker. For simplicity, we use
square block in DMac, so the column size is set to m as well. Based
on this equation, DMac can automatically choose the sufficiently
large block (e.g., a value of m is near the upper bound) while fully
exploiting the parallel ability of the cluster.

5.4 System Implementation
We proceed to discuss the implementation of DMac. Currently it

is implemented as a library of Spark and provides classes, includ-
ing DenseMatrix and SparseMatrix, which can be directly used to
conduct matrix operations for users. All the operators supported
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in DMac can be direactly called through class methods to perfor-
m computation.For the ease of programming, we provide a set of
R-Like symbols to represent each matrix operator through the lan-
guage feature of Scala. Users can call matrix operations in DMac
in a similary way comparing to R. Specific program examples are
presented in Section 6.4. A sparsity value can be assigned by user
for the input matrix or pre-computed before the matrix programs.
The size of intermediate matrices are estimated and the statistics is
maintained at the driver program of Spark. The execution plan is
also generated at the driver program.

DMac utilizes the expression ability of RDD, which is the dis-
tributed memory abstraction in Spark, to represent each distributed
matrix with items indicating blocks. The basic and extended op-
erators are implemented based on the transformation operations of
RDD, like map, groupByKey and reduceByKey. DMac takes ad-
vantage of the cache mechanism of Spark to express matrix depen-
dencies, such as reference dependence. We customize the partition
interface of Spark with different partition schemes to fulfil the re-
quirement of DMac, i.e., three partition schemes used in DMac are
added. Furthermore, the Extract and Transpose dependencies are
expressed as a local transformation operation of RDD.

To implement the In-Place based execution approach, the reduce-
ByKey interface of Spark is modified. In the original implemen-
tation of Spark, reduceByKey utilizes an in-memory HashMap to
perform a map-side combine operation, which is exactly the buffer
based approach. This combine operation induces heavy pressure on
memory usage. Since the results generated by the In-Place based
approach are already combined in DMac, it does not need any fur-
ther combine operation. Thus, the map-side combine operation is
turned off in DMac.

6. AN EXPERIMENTAL STUDY
In this section, we present an experimental study to evaluate the

proposed distributed matrix computation system, DMac. We ex-
perimentally demonstrate the efficiency of execution plan, perfor-
mance on various matrix applications, and the scalability of DMac.
The performance is mainly measured by the average execution time
and the communication cost for various matrix computation pro-
grams.

6.1 Experimental Setup
The experiments are conducted on a cluster with four physical n-

odes by default, where each node has a 2.6GHz CPU, 48GB mem-
ory and a 10TB hard disk. The maximal memory allocation in JVM
is set to 32GB. To demonstrate the scalability of DMac with respect
to the number of workers, we also test the proposed approach on a
20-node cluster with the same hardware equipment.

Datasets. Our experiments are conducted on both real-world
and synthetic datasets. We use five real-world datasets in the evalu-
ation, including Netflix [6], soc-pokec, cit-Patents, LiveJournal and
Wikipedia3, whose detailed meta-data information will be present-
ed in the corresponding experiments. The synthetic datasets are
generated by a random data generator which can produce a sparse
matrix V with d rows and w columns in s sparsity. Two dense
matrices with more than 8 billion non-zero items and 96 million
non-zero items respectively are also used in our experiment.

Baseline comparison. Different distributed matrix computation
systems have been proposed recently, and SystemML [14, 18] is
the latest one among them. Since SystemML is a matrix computing
system originally implemented on Hadoop, we migrated SystemM-
L to the Spark platform for the fair comparison, which is denoted as
3http://konect.uni-koblenz.de

SystemML-S. We implemented the core techniques of SystemML
on Spark and utilized the cache mechanism provided by Spark
to put the intermediate result into memory; thus, SystemML-S can
avoid redundant disk access. Furthermore, we deployed the same
local execution strategy for both SystemML-S and DMac. In sum-
mary, the only difference between SystemML-S and DMac is that
SystemML-S generates the execution plan without utilizing matrix
dependency while DMac does. Furthermore, two famous distribut-
ed matrix computing systems, ScaLAPACK [5] and SciDB [8], are
also used in the evaluation.

6.2 Efficiency of Execution Plan
The matrix execution plan is the most important issue for dis-

tribute matrix computation systems. In the first experiment, we
demonstrate the performance gain contributed by the communi-
cation efficient execution plan in DMac. The GNMF algorithm
(Code 1) is used as the benchmark. The input matrix V is the Net-
flix dataset and the factor size for matrix W and H is set to 200,
which is a reasonable value for the Netflix dataset.

Figure 6 shows the results including execution time and commu-
nication cost of running GNMF on DMac and SystemML-S on the
4-node cluster. In Figure 6(a), we can see that DMac is about 1.6
times faster than SystemML-S in terms of execution time. Mean-
while, both DMac and SystemML-S perform better than the R so-
lution which is one of the most efficient in-memory matrix compu-
tation solutions in a single machine. Please note that, the original
SystemML is slower than the R [14]. By implementing the matrix
computing in Spark and equipping the local execution strategy of
DMac, the performance of SystemML-S can be improved in one
order of magnitude compared with the original SystemML.

The performance gain of DMac compared with SystemML-S is
mainly obtained from our novel communication efficient execution
plan. Figure 6(b) shows the detailed communication cost compari-
son of SystemML-S and DMac. The SystemML-S transfers around
40GB data in the cluster while it is only about 1.5GB for DMac.
The cause of significant gap in communication cost between Sys-
temML and DMac is that DMac fully exploits the matrix depen-
dency in the program. In the plan generated by SystemML-S, the
matrix dependencies (e.g., Reference dependency and Transpose
dependency) are not taken into consideration. Hence, for each ma-
trix operator, the input matrices have to undergo a repartition phase
which increases communication cost. For example, the computa-
tion phase of H ∗ (WTV ) / (WTWH) first partitions three in-
put matrices with a hash partitioning method. Thus, blocks with
the same row and column index will be sent to the same reducer
to perform the cell-wise multiplication and cell-wise division. In
contrast, DMac can conduct this computation phase without any
communication cost. After the preceding operators in DMac, these
three input matrices are already in Column scheme, which can sat-
isfy the requirement of these two cell-wise operators.

For both DMac and SystemML-S, the overall execution time
consists of two major parts, i.e., computation and communication.
We also investigated the effect of utilizing matrix dependency on
these two factors. By analysing the result of execution time in this
experiment, we find that the percentage of time costed for com-
munication in SystemML-S is around 44% while it is only 6% in
DMac. Since the computation costs are almost the same on D-
Mac and SystemML-S, we can conclude that utilization of matrix
dependency in DMac can significantly reduce the communication
cost, and hence DMac yields better overall performance.
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Figure 6: The performance of running GNMF on Netflix dataset

6.3 Effect of Local Execution Strategy
To process the matrix computation in distributed systems, we al-

so proposed an efficient local execution strategy for each worker in
the cluster. Since the matrix computation generally has high mem-
ory demand, the block-based strategy is designed to optimize the
memory usage and better exploit the parallelism of modern com-
puters at each computing node. We next show the effect of local
execution strategy in DMac, i.e., the comparison between two dif-
ferent implementations of the block-based approach, and the influ-
ence of memory block size. We use matrix multiplication for this
evaluation, since multiplication is a primary and complex opera-
tion. Four real-world graphs are used as the input matrices and the
meta data of graphs is listed in Table 3.

Graph Node# Edge#
soc-pokec 1,632,803 30,622,564
cit-Patents 3,774,768 16,518,978

LiveJournal 4,847,571 68,993,773
Wikipedia 25,942,254 601,038,301

Table 3: Statistics of datasets
In-Place vs. Buffer
Two different implementations of the local block-based approach-
es are compared. One is the In-Place based implementation men-
tioned in Section 5.3; the other is a traditional Buffer implemen-
tation which parallelizes multiplication of two matrices randomly,
buffers the intermediate block in memory and finally performs the
aggregation.

Figure 7 illustrates the memory consumption on four graphs. It
is clear that the In-Place based implementation is much more effi-
cient than the Buffer implementation. For LiveJournal dataset, the
memory cost of Buffer implementation is about 5G more than that
of In-Place based implementation. For Wikipedia dataset, the In-
Place based implementation can finish the computation with using
only 16G memory on each node; while the Buffer method cannot
run successfully due to its too high memory requirement. Note that,
each node has maximal 48G memory in our cluster. The In-Place
based implementation can effectively organize the parallelization
of block multiplication, and hence the memory consumption is bet-
ter controlled. Moreover, for soc-pokec and cit-Patents datasets,
which are much sparser compared with the other two graphs, the
differences between In-Place based implementation and Buffer im-
plementation are relatively slighter, since the sizes of the interme-
diate results are smaller.

Influence of block size
As discussed in Section 5.3, the block size affects the overall per-
formance. Figure 8(a) illustrates the execution time comparison for
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Figure 7: Memory usage
different block sizes on various datasets. First, when the block size
is small, the huge memory consumption leads to the poor perfor-
mance. In LiveJounal datasets, when the block size is smaller than
200k, the execution time becomes larger than 155s. In soc-pokec
dataset, the performance becomes worse when the block size is s-
maller than 50k. The total memory usage on each computing node
for different block sizes is shown in Figure 8(b). For LiveJournal,
when the block size is close to 10k, it consumes nearly 19G mem-
ory while the ideal situation only costs around 6G. The overhead is
caused by the duplicated storage of the Column Start Index array
when the size of block is small. Generally, with the increasing of
block size, the memory cost decreases.

Second, the execution time is increased when the block size is
larger than a threshold. This is because when the block size increas-
es, the number of tasks for local parallel execution is decreased.
The threshold can be estimated through Equation 3. Here in our
4-node cluster, K is four and L is eight, the threshold is about
856k, 289k and 667k respectively for LiveJournal, soc-pokec and
cit-patent. Figure 8(a) shows that when the block size exceeds
800k (LiveJournal) or 300k (sco-pokec), the performances become
worse. The slight difference between the actual results in the ex-
periment and estimation of Equation 3 comes from the skewness of
datasets. However, the results in Figure 8(a) verify that Equation 3
can guide DMac to choose a reasonable block size. The error bars
in these two figures indicate that the trend is not caused by noises.

6.4 Performance on Various Matrix Applica-
tions

To demonstrate the robustness of DMac on various matrix com-
putation tasks, we next evaluate the performance on other well-
known matrix applications, including PageRank, Linear Regres-
sion, Collaborative Filtering and Singular Value Decomposition.
We describe how these algorithms can be expressed in matrix pro-
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Figure 8: Inference of block size
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Figure 9: Performance on various matrix applications

gram and the way they are written in DMac (As shown in Ap-
pendix), and present the corresponding results.

PageRank is ran on various datasets in Table 3. As shown in
Figure 9(a), DMac consistently performs better than SystemML-S
across the datasets. For the Wikipedia dataset, the average execu-
tion time per iteration in DMac is approximately 8s while it needs
about 40s in SystemML-S. In PageRank, the link matrix will be
used in each iteration. DMac can cache the column scheme of
link in memory to avoid redundant communication cost accord-
ing to the Reference dependency. Therefore, only a Broadcast
scheme of rank matrix will be sent across the cluster at each itera-
tion, which is usually a small matrix. In SystemML-S, although the
rank matrix can also be cached into memory, the partition scheme
does not meet the requirement of the multiply operator. The
above result analysis can also explain why DMac performs better
on other three datasets.

Linear regression is tested with a synthetic 108 × 105 matrix V
which contains 1 billion non-zero items, and collaborative filter [7]
uses the Netflix dataset which is a standard dataset for the algo-
rithm. The SVD implementation is also evaluated on the Netflix
dataset. The performances of these three applications are shown
in Figure 9(b). In each application, the execution time has been
normalized to the execution time of DMac. For linear regression,
DMac outperforms SystemML-S with more than seven times. The
execution plan generated by DMac partitions V only once through
the whole computation process. However, the cache version of V
and V T in SystemML-S are not satisfied the requirement of par-
tition schemes in the multiply operator, and hence they stil-
l need to be repartitioned. The core computation of SVD is two
multiply operators. Similar to Linear Regression, reduntant par-
tition for matrix V would be avoided in DMac. The execution time
of SVD in DMac is 291s while it is 954s in SystemML-S. In the

collaborative filtering, there are two multiply operators. The
plans generated from DMac and SystemML-S are both the RMM
execution strategy for these two multiply operators. The total
communication cost in DMac is n× |R| where n is the number of
nodes. However, SystemML-S needs to broadcast matrix R twice
in each task and partition the intermediate result RRT , which is
a dense matrix with more than 300 million non-zero items. As a
result, the execution time of DMac is only 151s while it is 264s for
SystemML-S.

6.5 Performance on Scalability
Scalability is an essential feature for distributed matrix computa-

tion systems. The following experiments show the high scalability
of DMac in terms of the size of datasets and the number of workers.

To obtain datasets in different scale, we generated the synthet-
ic matrices V with fixing the number of columns to 100000 and
varying the number of rows. Therefore the number of non-zeros
in V varies linearly. This matrix generating process is the same as
in [14].

Figure 10(a) and Figure 10(b) show the average execution time
per iteration of GNMF algorithm and Linear Regression algorithm
with increasing the number of nonzero in the input matrices re-
spectively. From the figures, we can see that with the increase of
input matrix size, the gap between SystemML-S and DMac also
increases. In the GNMF algorithm, if the size of V increases, the
sizes of matrices W , V HT and WHHT also increase. In the ex-
ecution plan generated by SystemML-S, these three matrices need
to be repartitioned at each iteration. W will be partitioned four
times since there are four references in each iteration while V HT

and WHHT will be repartitioned once. However, in the execution
plan of DMac, W only needs to be partitioned once. In each itera-
tion, only Row scheme of W is required. Column scheme of WT
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Figure 10: Scalability

can be directly generated from Row scheme of W through Trans-
pose dependency. Meanwhile, the partition schemes of V HT and
WHHT generated by the previous operations are also with Row
scheme. Thus, no repartition step is needed according to Reference
dependency. In summary, DMac can obtain a steady performance
with the increase of input matrix. For Linear Regression algorith-
m, SystemML-S needs to repartition the input matrix V twice at
each iteration. The communication cost increases sharply when V
becomes large. In the execution plan generated by DMac, the in-
put matrix V only needs to be partitioned once through the whole
computation process. Thus, with the increasing input size, the com-
munication cost in DMac can be well-controlled, and hence DMac
yields better scalability.

GNMF and linear regression are next ran on a sparse matrix with
2 billion non-zero items to demonstrate the scalability of DMac
with respect to the number of workers. The results are shown in
Figure 10(c) and Figure 10(d). We can clearly see that the perfor-
mance of DMac is improved gradually with the increasing number
of workers from 4 to 20. For example, in GNMF algorithm, the ex-
ecution time is about 65s per iteration when there are four workers;
while it can be reduced to 20s when the number of worker increases
to 20, achieving a speedup of 325%.

6.6 Comparison with other systems
We further present the experimental results of comparing DMac

with ScaLAPACK and SciDB. ScaLAPACK [5] is a library of lin-
ear algebra routines for distributed memory computers and pro-
vides a series of interfaces for distributed matrix computation. S-
ciDB [8] is an open-source data management system orienting for
large (petabyte) scale array data. A linear algebra library in SciDB
accepts matrix as inputs and provides functionality for matrix op-
erators (e.g., inverse, multiplication, transpose and SVD).

Matrix multiplication is a very common and primitive operation,
and many graph algorithms can be represented through it. There-
fore, we use the matrix multiplication to conduct the following
comparison. Two datasets with different sparsity are used. The
first one contains two matrices V1 and HT . Matrix V1 is construct-
ed from the Netflix dataset and H is a dense matrix with 480189
rows and 200 columns. The sparsity of V1 and H is 0.01 and 1
respectively. In the second dataset, the matrix V1 is replaced by a
matrix V2 which has the same dimension characteristics with V1

but has the sparsity of 1. ScaLAPACK, SciDB, SystemML-S and
DMac are all running on a 8-node cluster and each node launches
eight processes (instances) for these systems.

ScaLAPACK SciDB SystemML-S DMac
MM-Sparse 107s 11m35s 18.5s 17s
MM-Dense 116s 12m15s 133s 121s

Table 4: Comparision of ScaLAPACK, SciDB, SystemML-S
and DMac

The “MM-Sparse” row in Table 4 shows the results of multi-
plying V1 and H . The performance of DMac is significantly bet-

ter than those of ScaLAPACK and SciDB, because DMac can ef-
ficiently support the operators processing both sparse and dense
matrices. Both ScaLAPACK and SciDB are not well tuned for s-
parse matrices 4, and they handle the sparse matrix as the way on
dense one. The result of multiplying V2 and H is presented in
the “MM-Dense” row. Comparing with the result of the sparse ma-
trix, there is nearly no much difference in ScaLAPACK and SciDB,
while DMac needs more time to handle a dense matrix. However,
the performance of DMac is still comparable with ScaLAPACK
which is a highly tuned library for matrix computation. The reason
is as follows. First, DMac adopts the one-dimensional partitioning
methods (e.g., row or column), which can benefit the matrix multi-
plication on MapReduce like systems. No communication will be
invoked after the data shuffling is completed. Second, The local
execution method in DMac adopts a shared memory architecture
and each thread can read the input data simultaneously without any
interference. Since ScaLAPACK is built on top of MPI, processes
communicate with each other through messages. Hence, multiple
processes will be created on a single node and data is transferred
through messages instead of share memory. SciDB is a complete
data management system aiming at scientific computation. It takes
the responsibility of data partition and query processing. Before
performing matrix operations, SciDB needs to redistribute the data
on each computing node to satisfy the requirement of ScaLAPACK.
Meanwhile, SciDB maintains a failure handling mechanism during
the computation, which introduces extra overhead. Hence, it costs
more time to complete the operation comparing to ScaLAPACK.
When performing only a multiplication operator, the improvement
of DMac against SystemML-S is not significant as earlier evalua-
tions, because they share the same local execution method and the
total communication cost is the same.

7. RELATED WORK
MapReduce has emerged as a popular programming model for

parallel data processing. It simplifies the development of distribut-
ed parallel application for programmers. Hadoop [2] and Spark
are two popular open source implementations of MapReduce com-
putation model. However, the MapReduce interface is fundamen-
tally restrictive. It is difficult to write an efficient program for a
real-world matrix application. Therefore, different distributed ma-
trix computation systems have been proposed based on the general
large scale data processing platforms. Pegasus [15] is a Hadoop-
based library that implements a class of graph mining algorithms
which can be expressed via repeated matrix-vector multiplications.
However, only considering a single primitive is not enough. Sys-
temML [14], HAMA [21], Mahout [4] and MadLINQ [20], have
provided a general interface for large-scale matrix computations.
MadLINQ utilizes a fine-grained pipelining execution model to ag-
gressively explore the inter-vertex parallelism. But, using pipeline
obtains slight performance gain since it cannot decrease the total
4http://acts.nersc.gov/scalapack/
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amount of communication data. SystemML has provided an R-like
matrix interface language, which helps users escape from hand-
coding MapReduce programs. SystemML automatically translates
user-written program into a series of MapReduce jobs running on
Hadoop. A cost model is utilized in SystemML to determine the
execution strategy for matrix multiplication. A hybrid parallelism
execution strategy is also proposed in SystemML to get comparable
performance with in-memory systems [18]. Compared with these
large-scale matrix computation systems, DMac novelly exploits the
dependencies in the matrix programs to construct a communication
efficient execution plan.

Matrix computation has also been a focus area in the HPC com-
munity for many years. BLAS [1] and LAPACK [3] have provided
a series of routines to efficiently support matrix operators. ScaLA-
PACK [5] is the distributed variant to parallelize the computations
among multiple computing nodes. Although ScaLAPACK is high-
ly expressive, it is complicated to program a complex matrix ap-
plication. Meanwhile, it is the users’ responsibility to partition the
matrix into blocks and place them on each working node. SciDB is
an open-source data management system for scientific application.
SciDB [8] adopts an array data model and has provided a great
query language which is friendly to matrix computation. However,
it still treats each matrix operator independently and is lack of the
ability to reduce communication cost for a matrix application.

Next we review the work on partition schemes for matrix com-
putations. Various partitioning methods have been adopted to per-
form distributed matrix computation. Chunk-based partitioning is
used in SciDB and block-cyclic partitioning is employed in ScaLA-
PACK. These two partitioning methods can be classified as two-
dimensional partitioning method, while the row and column parti-
tioning adopted in DMac and SystemML can be regarded as one-
dimensional partitioning method. Two-dimensional partitioning
method produces a more balance partition while one-dimensional
partitioning can reduce the number of aggregation during the com-
putation. DMac adopts the one-dimensional partitioning methods
since it is more suitable for matrix multiplication on MapReduce-
like systems.

At last, we briefly discuss the works have already laid founda-
tions for communication optimization in distributed computing en-
vironment, which include data reusing via a loop-aware scheduling
method for iterative application [9], transformation-based optimiz-
er to avoid repartitioning operations [24], cost based optimization
for workflows [19, 17]. These optimization methods are designed
to handle the general parallel programs, and cannot be utilized to
support the matrix operators with dependency in distributed matrix
computation.

8. CONCLUSION
In this paper, we have developed a novel matrix computation

system (DMac) for efficient matrix computation in the distributed
environment. We identified a new concept of matrix dependency
which can capture the reference relationship between operators in
the matrix program. Unfortunately, the dependency information is
ignored in the existing matrix computation systems, which result-
s in frequent repartition process and heavy communication. The
exploitation of matrix dependency can help us choose execution
strategy with minimal communication for each operator. Conse-
quently, we can generate a communication efficient execution plan
for the whole matrix computation task. To accelerate the process-
ing in distributed systems, we further divided the execution plan
into multiple un-interleaved stages which are then run in a clus-
ter with efficient local execution strategy on each worker. The D-
Mac system has been implemented on a popular general-purpose

data processing framework, Spark. The extensive empirical stud-
ies on various matrix programs demonstrate the superiority of our
approach compared with existing methods.

ACKNOWLEDGMENTS
The research is supported by the National Natural Science Foun-
dation of China under Grant No. 61272155 and 61472009, 973
program under No. 2014CB340405, and Seeding Grant of Peking
University 2014-MI-09.

9. REFERENCES
[1] BLAS. http://www.netlib.org/blas/.
[2] Hadoop. http://hadoop.apache.org/.
[3] LAPACK. http://www.netlib.org/lapack/.
[4] Mahout. https://mahout.apache.org/.
[5] ScaLAPACK. http://www.netlib.org/scalapack/.
[6] J. Bennett and S. Lanning. The netflix prize. In KDD Cup’2007,

pages 35–35.
[7] J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of

predictive algorithms for collaborative filtering. In UAI’1998, pages
43–52.

[8] P. G. Brown. Overview of scidb: large scale array storage, processing
and analysis. In SIGMOD’2010, pages 963–968.

[9] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. Haloop: Efficient
iterative data processing on large clusters. VLDB’2010,
3(1-2):285–296.

[10] T. A. Davis. Direct Methods for Sparse Linear Systems
(Fundamentals of Algorithms 2). 2006.

[11] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. Comm. ACM, 51(1):107–113, 2008.

[12] M. L. Eaton and I. Olkin. Best equivariant estimators of a cholesky
decomposition. The Annals of Statistics, 15(4):1639–1650, 12 1987.

[13] L. C. Freeman. A Set of Measures of Centrality Based on
Betweenness. Sociometry, 40(1):35–41, Mar. 1977.

[14] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald,
V. Sindhwani, S. Tatikonda, Y. Tian, and S. Vaithyanathan.
Systemml: Declarative machine learning on mapreduce. In
ICDE’2011, pages 231–242.

[15] U. Kang, C. E. Tsourakakis, and C. Faloutsos. Pegasus: A peta-scale
graph mining system implementation and observations. In
ICDM’2009, pages 229–238.

[16] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix
factorization. In Advances in neural information processing systems,
pages 556–562, 2001.

[17] H. Lim, H. Herodotou, and S. Babu. Stubby: A transformation-based
optimizer for mapreduce workflows. VLDB’2012, 5(11):1196–1207.

[18] B. Matthias, T. Shirish, R. Berthold, S. Prithviraj, T. Yuanyuan, R. B.
Douglas, and V. Shivakumar. Hybrid parallelization strategies for
large-scale machine learning in systemml. In PVLDB’2014, pages
553–564.

[19] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and N. Koudas.
Mrshare: sharing across multiple queries in mapreduce. VLDB’2010,
3(1-2):494–505.

[20] Z. Qian, X. Chen, N. Kang, M. Chen, Y. Yu, T. Moscibroda, and
Z. Zhang. Madlinq: large-scale distributed matrix computation for
the cloud. In EuroSys’12, pages 197–210, 2012.

[21] S. Seo, E. J. Yoon, J. Kim, S. Jin, J.-S. Kim, and S. Maeng. Hama:
An efficient matrix computation with the mapreduce framework. In
CloudCom’ 2010, pages 721–726, 2010.

[22] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K. Gunda,
and J. Currey. Dryadlinq: A system for general-purpose distributed
data-parallel computing using a high-level language. In OSDI’2008,
volume 8, pages 1–14.

[23] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster computing with working sets. In HotCloud’2010,
pages 10–10.

[24] J. Zhou, P.-A. Larson, and R. Chaiken. Incorporating partitioning and
parallel plans into the scope optimizer. In ICDE’2010, pages
1060–1071.

104



APPENDIX
A. MATRIX PROGRAMS OF VARIOUS AP-

PLICATIONS IN DMAC
A.1 Program of PageRank

Code 2 shows the matrix program of PageRank algorithm. The link is a
row-normalized N ×N adjacent matrix generated from the corresponding
network while rank is a random vector (i.e., 1 × N matrix) representing
the initial PageRank values for each node. The main logic of PageRank
algorithm can be represented by the multiplication operation of rank and
link.

1 val max_iteration = 10
2 val link = load(path = ...)
3 var rank = new RandomMatrix(1, N)
4 for ( i <- 0 until max_iteration) {
5 rank = (rank %*% link) * 0.85 + D * 0.15
6 }

Code 2: PageRank algorithm

A.2 Program of Collaborative Filtering
The collaborative filtering algorithm is depicted in Code 3. Input matrix

R records the ratings between users and items with R[i, j] indicating the
rating between user j and item i. An item similarity matrix can be obtained
by computing R%∗%R.t. The predicted ratings of all items for each user
are obtained by multiplying the similarity matrix with R. A normalization
step is needed at last to get the final predict value for each user-item pair.

1 val R = load(path = ...)
2 val result = R %*% R.t %*% R
3 val predict = result.normalize

Code 3: Collaborative Filtering algorithm

A.3 Program of Linear Regression
Code 4 specifies an implementation of a conjugate gradient algorithm

for linear regression problem. Each row in the input matrix V represents
a training data points in a high-dimensional, sparse feature space. y is a
vector with 105 × 1 size, indicating the target label for each training data.
w is the output vector which has the parameters of the regression model.

1 val max_iteration = 10
2 val V = load(path = ...)
3 val y = load(path = ...)
4 var w = new RandomMatrix(100000, 1)
5 val lambda = 0.000001
6 val r = (V.t %*% y) * -1
7 var p = r * -1
8 var norm_r2 = (r * r).sum
9

10 for (i <- 0 until max_iteration) {
11 val q = (V.t %*% (V %*% p)) + p * lambda)
12 val alpha = norm_r2 / (p.t %*% q).value
13 w = w + (p * alpha)
14 val old_norm_r2 = norm_r2
15 r = r + (q * alpha)
16 norm_r2 = (r * r).sum
17 val beta = norm_r2 / old_norm_r2
18 p = (r * -1) + (p * beta)
19 }

Code 4: LinearRegression algorithm

A.4 Program of Singular Value Decomposition
Code 5 shows the implementation of distributed SVD for large matrices

using the Lanczos algorithm5. Matrix V is the one which needed to be
5http://en.wikipedia.org/wiki/Lanczos_algorithm

decomposed and rank is the desired rank of the approximation for singular
values. Through the iterative computation, a tridiagonal matrix will be built
and the singular values are derived from the local tridiagonal matrix.

1 val V = load(path = ...)
2 val rank = 100
3 var vc = new RandomMatrix(n, 1)
4 var vp = new RandomMatrix(n, 1, 0)
5 val triDiag = new LocalDenseMatrix(rank, rank)
6 var beta = 0
7
8 for (i <- 0 until rank) {
9 var w = V.t %*% (V %*% vc)

10 val alpha = (vp.t %*% w).value
11 w = w - (vp * beta)
12 w = w - (vc * alpha)
13 beta = v.norm(2)
14 vp = w
15 vc = vp
16 triDiag[i][i] = alpha
17 if (i > 0) {
18 triDiag[i-1][i] = beta;
19 triDiag[i][i-1] = beta;
20 }
21 }
22 triDiag.computeSingularValue()

Code 5: SVD algorithm
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