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ABSTRACT
Query processing on GPU-style coprocessors is severely lim-
ited by the movement of data. With teraflops of compute
throughput in one device, even high-bandwidth memory
cannot provision enough data for a reasonable utilization.

Query compilation is a proven technique to improve mem-
ory efficiency. However, its inherent tuple-at-a-time processing
style does not suit the massively parallel execution model of
GPU-style coprocessors. This compromises the improvements
in efficiency offered by query compilation. In this paper, we
show how query compilation and GPU-style parallelism can
be made to play in unison nevertheless. We describe a compiler
strategy that merges multiple operations into a single GPU
kernel, thereby significantly reducing bandwidth demand.
Compared to operator-at-a-time, we show reductions of mem-
ory access volumes by factors of up to 7.5x resulting in shorter
kernel execution times by factors of up to 9.5x.
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1 INTRODUCTION
GPUs are frequently used as powerful accelerators for query
processing. As the arithmetic throughput of the coprocessor
peaks in the teraflop range, it becomes a challenge to provision
enough data. For this reason, hardware vendors equip graphics
cards with high bandwidth memory that has read and write
rates of hundreds of GB/s. Still, memory intensive applications
such as query processing fall behind regarding the cost of data
movement for different reasons. Figure 1 shows the path of
relational data through the hierarchical memory levels in a
typical coprocessor system. Along the path, several bandwidth
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Figure 1: The path of a tuple through the memory levels of
a coprocessor environment.

and capacity constraints need to be considered to achieve
scalability and performance:

PCIe / OpenCAPI / NVLink. A widely-acknowledged prob-
lem is the data transfer bottleneck between the host system and
the coprocessor [9], typically via PCIe. Due to the coprocessor’s
limited memory capacity, data transfers are necessary during
computations. With an order of magnitude between internal
and external memory bandwidth, database developers are
challenged with data locality-aware algorithms that efficiently
use inter-processor communication. Recent technologies, i.e.,
OpenCAPI and NVLink, increase the bandwidth over PCIe,
shifting the bottleneck towards GPU global memory.

GPU Global Memory. The fine-grained data parallelism
of a GPU typically requires that kernels perform additional
passes over the data. Performing multiple passes, however, can
significantly inflate memory loads and can cause a bandwidth
bottleneck especially for random memory accesses.

Main-Memory. A recent development are integrated GPU-
style coprocessors that can directly access the memory of the
host CPU. Such an Accelerated Processing Unit (APU) allows
to use massively parallel processing without additional data
transfers. However, the available memory bandwidth is lower
than that of a dedicated GPU (30 GB/s vs. hundreds of GB/s).

Scratchpad Memory1. Scratchpad memory is located on-
chip and placed next to each compute unit of a GPU. It can
be controlled as an explicit cache for low-level computations
and offers a very high bandwidth. However, the capacity is

1We use the term scratchpad memory to disambiguate shared memory for
CUDA and local memory for OpenCL.

https://doi.org/10.1145/3183713.3183734
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Run-to-finish – input: R, output: P
move R Host→ GPU
tmp← op1(R) /* invoke first GPU kernel */

P← op2(tmp) /* invoke second GPU kernel */

move P GPU→ Host

Figure 2: Run-to-finish execution of two successive kernels.

limited to 16 KB – 96 KB per core which makes it challenging
to use it for large-scale computations.

Contributions
In this work, we present our new query compiler HorseQC.
We designed HorseQC to account for the hierarchical memory
structure of coprocessor environments and for the inherent
bandwidth limitations. Our main contribution is to show how
various existing techniques can be combined and extended to
build an efficient query processing engine on coprocessors.

(1) We analyze the bandwidth limitations in several execution
models (cf. Section 2).

(2) We show a way to integrate query compilation into a
coprocessor-accelerated DBMS (cf. Sections 3 and 4).

(3) We present solutions to efficiently process all processing
steps of a pipeline in a single pass over the data (cf. Sections
5 and 6).

(4) We describe how these parts play together in an overall
system (Section 7) and evaluate our proposed concepts
(cf. Section 8).

(5) We discuss our results (cf. Section 9) and related work
(cf. Section 10), and conclude in Section 11.

GPU-accelerated database systems have used different macro
execution models in the past. Orthogonally, our work describes
a micro execution model that can be integrated with different
existing macro execution models.

2 MACRO EXECUTION MODEL
We first analyze macro execution models that various systems
have used in the past. To evaluate a relational query operator,
state-of-the-art systems will select a number of primitives
and execute the corresponding kernel sequence on the GPU.
To feed the kernels with data, the macro execution model
defines how data transfers will be interleaved with kernel
executions. Here, the data movement from kernel to kernel
may result in additional bandwidth demand as compared to
conventional systems. To understand the effect, we study the
implications that existing macro execution models have on
the use of bandwidth at multiple levels (PCIe, GPU global
memory, etc.). As a poster child, we profiled the execution
of Query 3.1 from the star schema benchmark (SSB) [24].
The query was executed at scale factor 10 with CoGaDB [6]
on a NVIDIA GTX970 GPU2 (details are given in Appendix
Section A). In the following, we discuss three macro execution
models: run-to-finish, kernel-at-a-time and batch processing.

2We measured 146.1 GB/s GPU global memory bandwidth in a host system
with 16 GB/s bidirectional PCIe bandwidth.

Kernel-at-a-time – input: R, output: P
foreach ri in R=r1 ∪ · · · ∪ rm do
move ri Host→ GPU

mi ← op1(ri) /* invoke first GPU kernel */

move mi GPU→ Host (assemble into M)

foreach m j in M=m1 ∪ · · · ∪mn do
move m j Host→ GPU

p j ← op2(m j) /* invoke second GPU kernel */

move p j GPU→ Host (assemble into P)

Figure 3: Kernel-at-a-time achieves scalability by transfer-
ring I/O for each kernel through PCIe.

2.1 Run-To-Finish (Not Scalable)
A straightforward way to execute a sequence of kernels is to
first transfer all input, execute the kernels, and finally transfer
all output. The approach, illustrated in Figure 2, has the advan-
tage that intermediate data remains in GPU global memory
in-between kernel executions and no significant PCIe transfers
are necessary. However, run-to-finish has the disadvantage
that it only works if all input, output, and intermediate data is
small enough to fit in GPU memory. Run-to-finish macro execu-
tion models are used, e.g., by Ocelot [12] and CoGaDB [6]. The
lack of scalability leads us to evaluate the following execution
models.

2.2 Kernel-At-A-Time
To process large data on coprocessors, we can execute each
kernel on blocks of data. The pseudocode of this approach is
shown in Figure 3. Processing blocks of data requires algo-
rithm choices that can deal with partitioned inputs. Joins or
aggregations, for instance, can only be processed in this mode
if their internal state (e.g. a hash table) can fit in GPU global
memory.

We analyze the data movement of kernel-at-a-time for
SSB Query 3.1. Blocks are first moved via PCIe from the
host to the coprocessor and then read by the kernel from GPU
global memory (output passes both levels vice-versa). In this
way, the data volumes for GPU global memory accesses equal
the data volume transferred via PCIe, plus the cost to build up
the hash tables in GPU global memory (0.4 GB here). Figure 5a
shows the resulting data movement.

In the figure, the arrows annotated with data volumes
represent PCIe transfers and GPU global memory accesses.
We aggregated the data volumes by kernel types (e.g. scan,
gather) and show only the most important kernels responsible
for 88.2% of the memory traffic. Given a PCIe bandwidth of
16 GB/s, all PCIe transfers together require at least 350 ms to
complete. This exceeds the aggregate time for GPU global
memory access by a factor of 5.8x. For kernel-at-a-time pro-
cessing the PCIe link is clearly the bottleneck.

Kernel-at-a-time processing is used to scale out individual
operators [16]. Unified virtual addressing (UVA) produces the
same low-level access pattern, albeit transparent to the system
developer.
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Batch Processing – input: R, output: P
foreach ri in R=r1 ∪ · · · ∪ rm do
move ri Host→ GPU

tmpi ← op1(ri) /* invoke first GPU kernel */

pi ← op2(tmpi) /* invoke second GPU kernel */

move pi GPU→ Host (assemble into P)

Figure 4: Batch processing executes multiple kernels for
each block that is transferred via PCIe.

2.3 Batch Processing
We can alleviate PCIe bandwidth limitations by rearranging
the operations of kernel-at-a-time. Instead of running kernels
until a column is processed, we can short-circuit the transfer
of intermediate results to the host. Batch processing achieves
this by reusing the output of the previous operation (op1) as
input for the next operation (op2) instead of transferring to the
host. This is applicable whenever intermediate batch results
can be kept within GPU global memory. The corresponding
pseudocode is shown in Figure 4.

We analyze the data movement cost with the example of
SSB Query 3.1. The GPU global memory load is the same as
for kernel-at-a-time processing, because each kernel reads and
writes I/O to GPU global memory. We obtain the PCIe transfer
cost using the transfer volumes of input columns of the query
and output of the final result. Figure 5b shows the resulting
data movement cost. Batch processing reduces the amount of
PCIe transfers by a factor of 8.8x. This shows that transferring
data in blocks and performing multiple operators per block
allows scalability and increases the efficiency compared to
kernel-at-a-time.

Batch processing macro execution models have been used
for coprocessing by GPUDB [36] and Hetero-DB [37]. Wu
et al. [33] describe the concept as kernel fission and detect
opportunities to omit PCIe transfers automatically.

Limitations. The lower amount of PCIe traffic can expose
GPU global memory bandwidth as the next limitation. Batch
processing reduces the PCIe transfer cost, but the amount of
GPU global memory access remains unaffected. The memory
access volume inside the device is now an order of magnitude
larger which, despite the high bandwidth, takes longer to
process than the PCIe bus transfers (Figure 5b). For this reason,
batch processing SSB Query 3.1 is not limited by PCIe transfers,
but by accesses to the (high-speed) GPU global memory. Since
in typical query plans, I/O and hashing operations both address
the same GPU global memory, the situation, in fact, may arise
frequently in real-world workloads.

Other Queries. A limiting amount of global memory access
can easily occur when many kernels are executed one after
another. Karnagel et al. [15] show that a simple query with one
selection and one aggregation operator already uses 13 kernels
for processing. To determine the prevalence of GPU global
memory bandwidth limitations, we profiled several queries
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Figure 5: Data movement for processing SSB Query 3.1.
While the throughput of (a) is limited by PCIe transfers, (b)
exposes GPU global memory access as the next bottleneck.

Query Passes Query Passes Query Passes
ssb11 7.5 ssb34 2.2 tpch5 7.2
ssb12 6.9 ssb41 7.4 tpch6 6.2
ssb13 6.7 ssb42 3.9 tpch7 9.0
ssb21 9.6 ssb43 3.5 tpch9 9.0
ssb22 9.2 tpch1 15.5 tpch10 5.8
ssb23 9.1 tpch2 14.5 tpch15 6.3
ssb31 11.0 tpch3 5.2 tpch18 38.5
ssb32 7.9 tpch4 6.6 tpch20 10.5
ssb33 7.5

Table 1: Number of passes for benchmark queries. Out of
25 queries, 9 are definitely limited by GPU global memory.

from the TPC-H and SSB benchmark sets3. We look at the ratio
of memory access to PCIe traffic as number of passes to assess
the load on memory and bus links. Table 1 shows the number
of passes for queries from the TPC-H and SSB benchmarks.
With a symmetric memory load, we can afford 146 GB/s

2·16 GB/s ∼ 4 to
5 passes before being limited by GPU global memory. While
memory can adapt to asymmetric read and write loads, PCIe
can service each direction with at most 16 GB/s. This changes
the number of affordable passes for asymmetric workloads to
146 GB/s
16 GB/s ∼ 9 in the worst case. Queries that require more than 9

passes are always limited by memory bandwidth before being
affected by the PCIe bottleneck. In Table 1 this is the case for 9
out of 24 queries, which indicates that it is crucial to reduce
the GPU global memory load.

3Note that CoGaDB does not support all TPC-H queries yet.
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3 MICRO EXECUTION MODEL
Tuning the macro level helps to remove the main bottleneck for
scalability: data transfers over PCIe. However, the macro level
change exposes a new bottleneck: the memory bandwidth
of GPU global memory (cf. Section 2.3). To utilize the GPU
global memory bandwidth more efficiently, we need to apply
additional micro-level optimizations using micro execution
models and combine them with the macro execution model
(batch processing) to achieve scalability and performance.

Existing micro-level optimizations such as vector-at-a-time
processing [38] and query compilation [23] utilize memory
bandwidth more efficiently by leveraging pipelining in on-chip
processor caches. Therefore, both techniques are promising
candidates for opening up the bottleneck of limited GPU global
memory bandwidth. However, vector-at-a-time processing
and query compilation are designed in the context of CPUs.
While it is highly desirable to apply both techniques in the
context of GPUs, mapping the techniques from CPU to GPU
is challenging, which we discuss in the following.

Vector-At-A-Time. To mediate the interpretation overhead
of Volcano and the materialization overhead of operator-at-
a-time, vector-at-a-time uses batches that fit in the processor
caches. First, this reduces the number of getNext() calls from
one per tuple to one per batch. Second, this makes material-
ization cheap because operators pick up the cached results of
previous operators. On CPUs, vector-at-a-time benefits from
batch sizes that are large enough to limit the function call
overhead and small enough to fit in the CPU caches.

On GPUs, the compromise between tuple-at-a-time and full
materialization strategies is not a sweet spot, however. Kernel
invocations are an order of magnitude more expensive than
CPU function calls. Furthermore, GPUs need much larger batch
sizes to facilitate over-subscription and out-of-order execution.
This leads to the problem that batches, which fit in the GPU
caches, are too small to be processed efficiently. Alternatively,
more recent GPUs support pipes to move a local execution
context from one kernel to another. This has been used by
GPL [25] for query processing. However, this technique still
introduces an overhead for switching the execution context.
In addition, it is limited to a depth of 2–32 kernels depending
on the microarchitecture.

Query Compilation. Query compilation is a commonplace
tool for avoiding excessive memory transfers during query
processing. Compiling code for incoming queries becomes
feasible with low-level code generation and achieves perfor-
mance close to hand-written code. The compilation strategy
of Neumann [23] keeps intermediate results in CPU registers
and passes data between operators without accessing memory
at all. The generated code processes full relations or blocks of
tuples using a sequential tight loop.

To use query compilation on GPUs, we must integrate
fine-grained data-parallelism into compiled queries. The par-
allelization strategy of HyPer [18], however, uses a coarse-
grained approach, which allows it not to break with the concept
of tight loops. In fact, HyPer does not use SIMD instruc-
tions [23] and thus omits fine-grained data-parallelism. Even

on CPUs with a moderate degree of parallelism in SIMD in-
structions, database researches are challenged with integrating
query compilation and SIMD instructions [20, 30].

In summary, using a micro-level technique for efficient on-
chip pipelining on GPUs remains a challenge. Applying any
of the commonplace techniques makes it necessary to combine
at least three things that are hardly compatible: fine-grained
data-parallel processing, extensive out-of-order execution, and
deep operator pipelines. To achieve our goal of mitigating the
GPU global memory bottleneck, we need to develop a new
micro execution model which we build up step by step in the
following sections.

4 DATA-PARALLEL QUERY COMPILATION
In the following, we show a micro-level execution strategy
that reduces GPU global memory access volumes by means
of pipelining in on-chip memory. To this end, we show the
approach of our query compiler HorseQC and its integration
with the operator-at-a-time execution engine of CoGaDB [6].

4.1 Fusion Operators
HorseQC extends the operator-at-a-time approach with the
concept of fusion operators, operators that embrace multiple
relational operations. A fusion operator replaces a sequence of
conventional operators in the physical execution plan with a
micro-level-optimized pipeline. The data movement within a
fusion operator can be improved by applying different micro
level execution models.

4.2 Micro-Level Pipeline Layout
To keep matters simple, we first apply query compilation with
the operator-at-a-time primitives described by He et al. [11].
This choice is not limiting as other data-parallel primitives
may be used instead. However, a commonality of different
primitive sets is that they use relational primitives with relational
functionality (e.g. select) and threading primitives with thread
coordination functionality (e.g. map, prefix sum, gather).

select

prefix sum

aligned write

hash

prefix sum

aligned write

project

prefix sum

aligned write

aligned write

prefix sum

join probe

op1

op2 op3

op4

Figure 6: Operator-at-a-time

State-Of-The-Art. We look at
a query with two input tables
and a total of four relational op-
erators op1, · · · , op4. Operator-
at-a-time runs three primitives
per operator (cf. Figure 6): The
first pass executes the relational
primitive (e.g. select, project)
and counts the number of out-
puts of each thread. The second
pass computes a prefix sum to ob-
tain unique per-thread write po-
sitions. The third pass performs
an aligned write. This means that
the output values are written
into a dense array and may in-
clude executing the relational
primitive for a second time to
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count_kernel( ... ) {
  int tid = get_thread_offset(); 
  // select
  ...
  // join probe (check match)
  ...
  flags[tid] = is_selected;
}

write_kernel( ... ) {
  int tid = get_thread_offset();
  int wp = prefix_sum[tid];
  bool is_selected = flags[tid];
  if(is_selected) {
    // join probe (build tuple)
     ...
    // project/write
     ...
    }
}

prefix sum

...

Operator-at-a-time Data-parallel query compilation

project

prefix sum

aligned write

join probe

prefix sum

aligned write

select

prefix sum

aligned write

op2

op1

opn

Figure 8: Transforming data-parallel operator-at-a-time into
compiled execution. The functionality of each operator
maps to designated positions in the generated kernels.

produce the output values. Thus, the query is processed in
twelve operations with separate GPU global memory I/O.

Multi-Pass Query Compilation. By grouping operations that
are applied to the same input table, the query may be pro-
cessed with two fusion operators. Within each fusion operator,

fusion
operator 1 

fusion
operator 2

select / 
hash

prefix 
sum

aligned 
write

prefix 
sum

aligned write

project / 
join probe

Figure 7: Multi-pass QC

we apply the following query com-
pilation strategy (cf. Figure 7): We
extract the prefix sum from the op-
erators and execute it only once be-
tween all relational primitives and
all aligned writes. The relational
primitives are then compiled into
one kernel called count, which is
executed before the prefix sum. The
aligned writes are compiled into one
kernel called write, which is exe-
cuted after the prefix sum. In this
way, we apply kernel fusion [31] to
the four relational primitives and to
the four aligned writes. The same
query is processed with six opera-
tions and the operations in compiled

kernels communicate through on-chip memory instead of GPU
global memory.

4.3 Instancing Relational Code Templates
We briefly describe the process used by HorseQC to compile
OpenCL code for the count and write kernels by an example
of the projection operation (similar to [5]). Each primitive,
except for prefix sum, is mapped to a designated position in

0.9 GB

0.1 GB

PCIe Transfers 
0.9 GB   ~56 ms

GPU Global Memory 
4.4 GB          ~31 ms

< 0.01 GB

count kernel

input: 0.7 GB 4.3 GB

write kernel

0.5 GB

prefix sum

0.3 GB

0.5 GB

0.3 GB

probe: 0.9 GB

2.4 GB

< 0.01 GB

input: 1.0 GB 4.6 GB

probe: 0.9 GB

2.3 GB

On-Chip Memory
14.4 GB     ~12 ms

GPU 
MEMMEM CORES

SCRATCHPAD MEM/
REGISTERS/CACHE

Figure 9: Data movement for data-parallel query compila-
tion with three phases.

the count kernel or in the write kernel (cf. Figure 8). The query
compiler receives a C++ object that describes the primitive’s
functionality (e.g. a tree for an arithmetic expression) and
maps the semantics to fragments of OpenCL. To illustrate,
πrevenue←price*discount would compile to

revenue[wp] = price[tid] * discount[tid];.
The global index tid is used to access the input columns and
the write position wp is used for the output columns.

The instantiated code is placed in a code frame, which has
several invariant features, e.g., thread offset computations,
a surrounding loop, as well as managed features such as a
parameter list. Projection is positioned in a conditional clause
of the write kernel that is entered by all threads with a positive
is_selected flag (cf. Figure 8). Other operations may include
function calls for reductions or hash table operations.

4.4 Memory Access and Limitations
In Figure 9, we illustrate the bandwidth characteristics of our
example query when using code generation with three phases.
The figure shows the behavior of the three-phase micro execu-
tion model described above with the batch processing macro
execution model. To analyze the implications of forwarding
intermediate results in the generated kernels through registers
and scratchpad memory, we extended the illustration with an
additional GPU-internal layer of memory.

GPU global memory access has previously been the bot-
tleneck for query execution. Here the count kernel accesses
1.7 GB in GPU global memory, the prefix sum computation
0.8 GB, and the write kernel 1.9 GB respectively. This is a
reduction by factor 1.9x compared to batch processing. In the
generated kernels, a substantial amount of memory traffic
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has moved to on-chip memory. In on-chip memory, the access
volume of 14.4 GB is not a limiting factor due to the extremely
high bandwidth of 1.2 TB/s of scratchpad memory.

Although the reduced GPU global memory traffic may sug-
gest that the approach eliminates the bottleneck, real world
queries still experience limitations. In fact, Section 8.6 shows
that compilation with three phases can still not saturate PCIe
for 9 out of 12 SSB queries. This is because the query complex-
ity prevents the strategy from utilizing the full GPU global
memory bandwidth. Therefore, we investigate ways to further
increase the processing efficiency in the next section.

5 PROCESSING PIPELINES IN ONE PASS
The previous execution model relied on a typical program-
ming concept of GPUs that executes operations with multiple
kernels. The kernels that execute the actual work for the op-
eration are interleaved with kernels that execute prefix sum
computations. To further improve the processing efficiency, we
have to break with this concept. With a new micro execution
model, we avoid round trips to GPU global memory, which
are caused by multi-pass implementations. This enables us
to radically reduce GPU global memory traffic and lift the
bandwidth bottleneck.

Compound Kernel. Kernel fusion brought reduction op-
erations (e.g. prefix sum) as boundaries into the spotlight.

fusion
operator 1 

fusion
operator 2 

aligned 
write

select / 
hash

prefix 
sum

aligned write

prefix 
sum

project / 
join probe

Figure 10: Compound kernel

Previously, we computed the pre-
fix sum between two generated
kernels to obtain write positions.
Instead of two separate kernels,
we now generate only one com-
pound kernel that integrates the
prefix sum computation (cf. Fig-
ure 10) and this eliminates multi-
ple passes. Computing write po-
sitions within a generated ker-
nel makes it possible to process
pipelines in one pass without in-
termediate materialization. In this
way, each fusion operator is exe-
cuted by a single compound ker-
nel. In the following, we look at
implementation strategies for re-

duction operations that enable fully pipelined processing.

5.1 Pipelining Data-Parallel Reductions
Reductions are a poster child for data-parallel algorithms [14]
and have been investigated in detail regarding complexity,
efficient implementations, and their applications. In the context
of database systems, they are especially relevant in the context
of prefix sums [2, 8] and aggregations. The latter involves two
techniques: Simple reductions aggregate to a single tuple and
segmented reductions compute grouped aggregates on sorted
data [29]. As reductions have inherent parallel dependencies,
they are typically implemented in a hierarchical structure that
involves running multiple kernels in sequence. This approach
is applied in state-of-the-art coprocessor database systems such
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Figure 11: The computation of a prefix sum for writing se-
lected elements to a dense array (a) can be parallelized using
atomic operations (b).

as Ocelot [12], CoGaDB [6], GPUDB [36], Kernel Weaver [32]
and Voodoo [26].

Atomic Prefix Sum. The separation into multiple reduction
kernels with intermediate materialization is an obstruction for
pipelining. To introduce a pipelined implementation, let us
look at a very simple sequential prefix sum at first:

for(i=0; i<n; i++)
if(flags[i]) prefix_sum[i] = sum++;

The sequential prefix sum loops through the array flagswhile
writing and incrementing sum for every valid entry. Figure 11a
illustrates the use of the prefix sum for a dense write of
selected input elements. When parallelizing the for-loop, this
implementation runs into the issue of many threads trying
to increment sum at the same time. To resolve this parallel
dependency, atomic operations can be used to isolate parallel
modifications of the same memory address. Atomic operations
ensure a consistent state, yet are executed in an undefined
order. The following code executes an atomic prefix sum to
compute unordered, dense write positions:

if(is_selected) wp = atom_add(&sum, 1);

Threads contribute an offset of 1 to the sum at address &sum by
executing the expression conditionally. Each atomic_add(..)
returns the previous state of sum. Thus, threads immediately
obtain a unique global write offset as wp in register. This is
illustrated in Figure 11b.

The use of atomic operations causes a break with the seman-
tic of the prefix sum because the result has no defined order. For
the relational semantic, however, only the uniqueness of output
positions is critical. Output permutations lead to non-aligned
GPU global memory access where adjacent threads do not
write to adjacent memory addresses. The impact on write
throughput, however, is limited, because the filter semantics
lead to non-aligned access for separate prefix sums too.

5.2 Code Generation for Compound Kernels
Computing write positions within a generated kernel allows
us to contract the three phases within a fusion operator into
one compound kernel. This simplifies code generation for two
reasons (cf. Figures 8 and 12): First, selection flags and write
offsets remain in registers and do not have to be passed
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compound_kernel( ... ) {
  int tid = get_thread_offset(); 
  // select
  ...
  // join probe
  ...

  //atomic prefix sum
  if(is_selected) 
    wp = atom_add(&sum, 1);
  
  if(is_selected) {
    // project/write
    ...
  }
}

Figure 12: The compound kernel integrates all three
pipeline phases into one kernel.

between kernels through materialization. Second, relational
primitives that occur both in the count and in the write kernel
are executed only once in the compound kernel, e.g., we probe
the hash table to check the number of matches and keep the
payload in registers for projection. This becomes possible in
the compound kernel as the register content remains valid
until projection. In Appendix E, we show the full code for an
exemplary query.

To instantiate relational primitives, we follow a similar
procedure as previously described, but now we use only
one kernel code frame: All relational primitives that affect
the number of outputs are placed before the atomic prefix
sum and all relational primitives that produce output after it.
The atomic prefix sum is instantiated from an invariant code
template that takes the is_selected flag as input and assigns
the write position wp as output. Both the input flag and the
write position are available in registers.

5.3 Memory Access and Limitations
The compound kernel micro execution model further reduces
GPU global memory access by a factor of 2.4x to 1.8 GB (see
Figures 9 and 13). Compared to operator-at-a-time, this is a
reduction by a factor of 4.7x. Pipelining the prefix sum avoids
round trips to GPU global memory that are necessary in the
three-phase micro execution model. The compound kernel
has only a minimal GPU global memory access volume for
input, output and hash table access. Now the on-chip traffic is
balanced with the GPU global memory traffic when relating
each memory volume to the available bandwidth.

The described approach heavily relies on atomic operations.
This has the disadvantage to cause limitations for parallelism.
Although the execution order is undefined, the operations are
sequentialized and reducing n values takes O(n) parallel steps.
However, Egielski et al. [7] show that recent hardware support
makes atomic operations competitive to parallel algorithms.
Still, the integrated prefix sum puts a significant pressure on
the atomic functional units, which prevents pipeline kernels

4.3 GB

0.5 GB

0.3 GB

2.4 GB

3.7 GB

2.3 GB

0.9 GB

< 0.01 GB

input: 0.9 GB

probe: 0.9 GB

< 0.01 GB

Figure 13: Data movement for query compilation with one
pass. The compound kernel reduces data movement by 4.7x.

from utilizing full GPU global memory bandwidth. In the
following, we address this issue and show how the efficiency
of parallel reductions in compound kernels can be increased.

6 EFFICIENT PIPELINED REDUCTIONS
Previously, we showed a way to pipeline reductions in gener-
ated kernels using atomic operations. This benefits the memory
efficiency, but at the same time exposes the atomic functional
units of a GPU as the bottleneck. This is especially critical
because several operations that are combined in the compound
kernel rely on atomic isolation as well, i.e., state-of-the-art
implementations of hash joins and hash aggregations [16] use
atomic operations to isolate hash table inserts.

This section addresses performance bottlenecks that oc-
cur when utilizing atomic reductions to pipeline relational
operators. We show a new technique local resolution, global
propagation, that is used by HorseQC to pipeline prefix sums,
single tuple aggregation and grouped aggregation efficiently.
The approach reduces the pressure on atomic functional units
and offers tunability regarding hardware and thread group
granularity. We describe the approach in the following.

6.1 Local Resolution, Global Propagation
Similar to other efficient GPU implementations such as in
CUB [21], local resolution with global propagation consists
of two levels of reductions. In contrast to other techniques,
local resolution, global propagation always uses pipelined
techniques on both levels. Local resolution is an additional
pre-reduction step, computed by a local thread group, whereas
global propagation is the same atomic reduction as described
in Section 5. We use the term Collaborative Thread Array (CTA)
for the thread groups in local resolution. CTAs can either
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Figure 14: Computing write positions with local resolution
(local offset), global propagation (global offset).

match the workgroup (AMD) or thread-block (NVIDIA) size
of the GPU kernel or work on a finer granularity.

The following code, illustrated by Figure 14, executes an
atomic prefix sum using local resolution, global propagation:
l_os = cta_prfx(flags, &cta_total); //local res.
if(cta_thread_idx == 0)
g_os = atom_add(&sum, cta_total); //global prop.

wp = l_os + g_os;

First, each CTA executes cta_prfx to compute a local prefix
sum on flags. This is the local resolution step. We imple-
ment cta_prfx with SIMD reductions (cf. Intra-Warp Scan
Algorithm by Sengupta et al. [28]). The function returns the
local offset l_os and the sum of all flags assigned to the CTA
cta_total. Second, one thread of each CTA adds cta_total
atomically to a global counter sum. This is the global propaga-
tion step. The call to atom_add returns the global offsets g_os.
Finally, the write position wp is the sum of l_os and g_os.

Compared to the simple atomic prefix sum, we now add
pre-aggregates instead of 1/0 flags to sum. Therefore, each
atomic add obtains ranges of output indices instead of a single
index. We make the analogy of allocating segments of output
memory to CTAs. The order of the allocations however is
undefined (see execution order in Figure 14). This leads to
output that is ordered within segments and permuted between
segments. Further investigation revealed that, due to the GPUs
stream processing engine, the permutations exhibit locality,
leading to semi-ordered output data.

Local Resolution Mechanisms. The mechanisms used for
local resolution are interchangeable. This makes it possible
to tune pipelined reductions and to apply them in different
operations (cf. Appendix Section C for more details). Figure 15a
and 15b show the integration of work-efficient reductions [3]
and SIMD reductions [28]. Both techniques have different
thread group granularities and we can choose between them
to adapt to the hardware parallelism of different processors.
Figure 15c shows the use of pipelined segmented reductions for
grouping. First, segmented reductions compute pre-aggregates

atomic
reduce

atomic 
hash aggregate

k v

xx  xxx xxxxx

xx  xxx xxxxx

xx  xxx xxxxx

xx  xxx xxxxx

atomic
reduce
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Figure 15: Local resolution mechanisms: (a) Work-efficient
reduction (b) SIMD reduction (c) segmented reduction.

in scratchpad memory. Second, global propagation inserts the
pre-aggregates into a hash table with an atomic operation. The
ability to control scratchpad memory opens up a new design
space for grouping algorithms in pipelined computations
(e.g. handling frequent items). A similar approach PLAT [35]
aggregates frequent grouping keys in a table local to each CPU
core.

7 DBMS INTEGRATION
We integrated our query compiler HorseQC into the open
source DBMS CoGaDB, leveraging the built-in code generator
Hawk [5]. The DBMS uses a columnar data layout and processes
full columns operator-at-a-time on GPUs and CPUs. We use
the front-end and the storage layer of CoGaDB, and HorseQC
adds a compiler-based execution engine.

We added two components to the DBMS: 1. a query compiler
that compiles fusion operators to GPU code (cf. Section 4) and 2.
a translation layer that identifies fusion operators and drives the
query compiler. Currently, there are two different workflows
for the translation layer:

(1) CoGaDB parses the SQL code for a query and gen-
erates a query plan. The translation layer applies the
produce/consume model [23] to the query plan to deter-
mine fusion operators. We use this approach for the SSB
queries and TPC-H Q6.

(2) The translation layer parses a JSON file that describes
the query plan including the fusion operators. This
enables us to process queries when (1) cannot handle the
queries via SQL (e.g. correlated subqueries or automatic
unnesting). This is used for the other TPC-H queries.

When the fusion operators are defined, the translation layer
drives the query compiler to compile and execute. Finally,
decompression of dictionary compressed columns and sorting
are executed by CoGaDB’s original execution engine.

8 EVALUATION
Section 2.1 showed that query coprocessing in existing macro
execution models is sensitive to memory bandwidth bottle-
necks on various hierarchical levels. We proposed several
micro execution models that allow to remove memory in-
directions to achieve a more efficient use of bandwidth. In
this section, we evaluate our approaches and carefully assess
bandwidth and throughput to show several benefits.
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The experimental study is structured as follows: First, we
evaluate the micro execution models. Therefore, we execute
specific queries to analyze the reduction performance of the
proposed techniques in Experiments 1 and 2. Then, we evaluate
the micro execution models for the SSB and TPC-H benchmarks
in Experiments 3 and 4. Second, we analyze the integration of
our micro execution model with the batch processing macro
execution model. Therefore, we analyze the real-world benefits of
our approach with a comparison of end-to-end performance in
Experiment 5 and a scalability analysis in Experiment 6. Note
that all experiments, except for Experiment 6, were executed
with scale factor 10.

8.1 Processing Techniques
There are three micro execution models in HorseQC that result
from the paper. Table 4 in the appendix provides implemen-
tation details. The goal of our micro execution models is to
use them within macro execution models to improve perfor-
mance. Therefore, it is crucial to achieve a higher throughput
than PCIe when executing queries. We show the benefit of
our approaches by comparing them to an operator-at-a-time
micro execution model. In this way, we analyze the benefit
of moving data transfers between relational operators to the
on-chip level.

Multi-pass The first approach separates reductions from the
generated kernels, which leads to an execution in multiple
passes (Section 4). Each reduction is executed on materialized
data using the boost::compute library.
Pipelined The second approach integrates reductions into a
fully pipelined kernel using atomic operations (Section 5). By
using atomic operations for each reduction input, the approach
is an instance of local resolution, global propagation that has
no local resolution step.
Resolution The third approach increases the efficiency of
pipelined reductions with local resolution methods like pre-
aggregation (Section 6). We differentiate between local res-
olution implementations using Resolution:SIMD for SIMD
reductions and Resolution:WE for work-efficient reductions.
Operator-at-a-time We use CoGaDB 0.4.1, which processes
full columns of data in each operator with CUDA kernels.
It features a run-to-finish macro execution model and an
operator-at-a-time micro execution model.

8.2 Baselines
PCIe transfer The PCIe transfer time for transferring input and
output data between the host’s main-memory and GPU global
memory. It is the target time for micro execution models for
balancing throughput and PCIe bandwidth. The PCIe transfer
time is shown in each graph with a dashed line ( ).
Memory bound The GPU global memory bound execution time
is the time for accessing the data. As each approach has to read
the input columns and write the output columns, the baseline
is a lower bound on the kernel execution time. We indicate it
with a solid line ( ) in each graph.

Model Type Archi- Cores Scratch B/W
tecture pad (KB) (GB/s)

GTX970 (NV) GPU Maxwell 13 96 146.1
GTX770 (NV) GPU Kepler 8 48 167.6
RX480 (AMD) GPU Ellesmere 32 32 104.9

A10 (AMD) APU Godavari 8 32 18.7
Table 2: Coprocessors used in the evaluation.

select lo_extprice * lo_discount + lo_tax as revenue
from lineorder
where lo_quantity between 25 - x and 25 + x

Figure 16: Query 1 is a simple selection and projection query
inspired by the star schema benchmark.

8.3 System Configuration
For the experiments, we use three dedicated GPUs with PCIe
gen 3.0 links and one APU that accesses main-memory di-
rectly. Table 2 specifies the GPU models and shows hardware
properties. The amount of scratchpad is available per core. The
reported bandwidth refers to GPU global memory for the
GPUs and to main-memory for the APU. It was measured
using on-GPU memcpy of 1 GB data. We measured bidirectional
PCIe transfers between CPU and GPU as 12.1 GB/s.

Both NVIDIA GPUs GTX770 and GTX970 run in a system
with an Intel Xeon E5-1607 CPU. We use the NVIDIA 364.19
driver and CUDA Toolkit 7.5 with OpenCL drivers. The AMD
RX480 GPU is placed in a separate system with the A10-7890K
APU. We use the AMDGPU-Pro 16.40 driver for the GPU and
the fglrx 15.201 driver for the APU. Each system is running
Ubuntu 14.04 and uses the boost library 1.61.

We used the profiling tools nvprof 2.0.28 for NVIDIA
hardware and CodeXLGpuProfiler V4.0.511 for AMD hard-
ware to measure kernel execution times, PCIe transfers, and
GPU global memory access. For the measurements of kernel
execution times, we used both tools to profile individual ker-
nels and sum up the kernel execution times if multiple kernels
are involved.

8.4 Experiment 1: Pipelined Prefix Sum
We compare several pipelined prefix sum techniques to one
non-pipelined technique for a query that filters and projects
one table. This allows us to analyze the benefit of integrating
prefix sum computations into single-pass kernels. We execute
Query 1, shown in Figure 16, and vary the selectivity in the
range [0, 1] using x. By running the experiment on four GPUs,
we aim to assess the best local resolution mechanisms for a
given hardware. Figure 17 shows the results.

Observations. Pipelined techniques perform better than
Multi-pass in most cases. Integrating the prefix sum compu-
tation into single-pass kernels reduces the kernel execution
times by factors up to 6.3x. While processing with Multi-pass
takes up to 328.6% of the PCIe time, Resolution:SIMD uses
only 101.3% of the PCIe time in the worst case (selectivity
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Figure 17: Projection query executed with different ap-
proaches. Integrating prefix sums into kernels allows fastest
execution.

1.0, RX480). This shows that the approach can saturate the
bus bandwidth for a variety of configurations. On the A10
there are no PCIe transfers and Resolution:SIMD increases the
overall throughput by factors of up to 1.6x over Multi-pass.

The results show that the local resolution step reduces
the performance impact of atomic operations. This becomes
visible for higher selectivity factors: Pipelined has higher
executions times because the strategy executes one atomic
addition per output. Resolution:SIMD and Resolution:WE
however show good performance across all selectivities due
to local resolution.

Resolution:SIMD achieves the shortest kernel execution
times in most cases and allows memory bound processing
on the GTX970. On the GTX770, lowering the output size
down to 0 does not affect the execution time. We conclude
that the GTX770 is compute-bound earlier than the GTX970.
The higher memory bandwidth of the GTX770 leads to an
increased throughput for atomic operations and Pipelined can
outperform Resolution:SIMD for selectivities below 10%. On
the RX480 and on the A10 there is no definite advantage for
one of the reduction techniques. In the following, we only
use Resolution:SIMD and skip the other techniques for a clear
presentation.

8.5 Experiment 2: Pipelined Group By
We evaluate the effect of pipelined GROUP BY aggregations
using different techniques. We execute Query 3 (shown in
Figure 26) with Operator-at-a-time, Pipelined and Resolution.
The query groups all tuples of lineorder according to the
computed attribute lo_orderkey%x into sums. We vary the
number of groups by increasing x from 2 to 16384. We show
the results of the experiment on a GTX970 GPU in Figure 18.
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Figure 18: Performance of grouped aggregations.

Observations. The execution times of Operator-at-a-time
do not depend on the group size. The main cost factor is
sorting the input columns. Pipelined shows up to 11.1x lower
execution times but only for larger group sizes. For group sizes
below 64, we observe high execution times. This is caused by
heavy contention of parallel aggregation hash table inserts.

The bottleneck is resolved by Resolution which uses pre-
aggregations to reduce the contention. The results show that
execution times reduce by factors of up to 126x. However,
the local pre-aggregations have a limited effect on larger
group numbers. This explains the spike at 128 groups, where
both pre-aggregation and contention have an effect. While
the approaches cannot saturate PCIe when aggregating a full
table, filters reduce the cost of grouping for real-world queries.

8.6 Experiment 3: Star Schema Benchmark
The previous experiments showed that pipelining specific
reduction operations helps to increase the throughput of query
processing. In this experiment, we analyze whether this behav-
ior carries over to real-world situations. To this end, we execute
the SSB Queries4 on the GTX970 GPU (other coprocessors in
Appendix Section G.2).

We use Operator-at-a-time and two variants of HorseQC.
HorseQC: Multi-pass uses pipeline breaking implementations
for reductions (A1, B1 and C1). HorseQC: Fully pipelined
integrates all pipeline operations in one kernel (using A3, B3
and C2). We show the results of the experiment in Figure 19.

Observations. The bandwidth analysis in Section 2.1 showed
that 4 out of 12 queries are limited by GPU global memory
access in operator-at-a-time processing.
∙ The kernel execution times of Operator-at-a-time show

that compute and latencies further increase the problem.
While PCIe would allow execution times between 60.6ms
to 90.9ms, the kernel execution times take longer for 10
out 12 queries with up to 295.5%.
∙ HorseQC: Multi-pass improves over Operator-at-a-time

and uses only 50.5% of the PCIe bandwidth transfer time
in the best case and 215.5% in the worst case. This shows
that without efficient pipelining of reduction operations,
the benefit of query compilation is limited.

4We could not process SSB Query 2.2 as we do not support range predicates
on dictionary compressed columns yet.
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Figure 19: Performance of SSB queries.

∙ HorseQC: Fully pipelined lowers all kernel execution
times to a level that is consistently lower than PCIe
transfer times. This shows that compiling pipelines into
one kernel with local resolution, global propagation pro-
vides an execution approach with sufficient throughput.
Processing takes 9.7% of the PCIe transfer time in the
best case and 78.1% in the worst case. For Queries 1.1,
1.2 and 1.3 kernel execution is memory bound by GPU
global memory access.

8.7 Experiment 4: TPC-H Queries
We execute and profile queries from the TPC-H benchmark [1]
to show the effect when relaxing the specific assumptions
of the star schema benchmark (e.g. using one centralized
table). We select a subset of queries based on the work by
Boncz et al. [4] to capture challenging aspects of the TPC-H
benchmark, i.e., Q1, Q4, Q13, and Q21 contain heavy aggre-
gation, Q9, and Q18 contain heavy joins, and Q4, Q19, and
Q21 contain parallelism bottlenecks. We modified 4 queries,
because HorseQC currently does not support all operations,
e.g., like expressions (cf. Appendix Section F for details). The
results of the experiment are shown in Figure 20. For Q1, there
is no result for HorseQC: Multi-pass, because the strategy ran
out of GPU memory. The results shown for Operator-at-a-time
are for all TPC-H queries supported by the DBMS.

Observations. The PCIe and memory bound baselines
show larger variations than for the SSB benchmark. This is
mainly caused by the join structure, e.g., Q13 joins three small
tables, while Q17, Q18, and Q21 join multiple instances of the
largest lineitem table.

The kernel execution times show that HorseQC can improve
over operator-at-a-time by factors of up to 8.6x. For Q1, Q4, and
Q9, there are cases where Operator-at-a-time has shorter kernel
execution times than compiled strategies. Further investigation
showed that in these cases Operator-at-a-time moves some
operators to the CPU, therefore the measurements cover a
limited amount of operations.

Comparing the variants of the query compiler, we observe
that HorseQC: Fully pipelined consistently improves over
HorseQC: Multi-pass by factors of up to 5.4x. HorseQC: Fully
pipelined achieves lower execution times than PCIe transfer
times for 8 out of 11 queries. For Q1, Q13, and Q18 the PCIe
bandwidth cannot be fully saturated. This is because the
queries contain grouped aggregations of unfiltered columns
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Figure 20: Performance of TPC-H queries.
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Figure 21: End-to-end performance of star join computation
for different scale factors.

(cf. Experiment 2). The execution times of HorseQC: Fully
pipelined take 5.6% of the PCIe transfer time in the best case
and 268.1% in the worst case.

8.8 Experiment 5: Scalability
Due to the deeply integrated storage layer implementations
of the host DBMS CoGaDB, we were not able to build a fully
scalable version of HorseQC. For this reason, we perform
a separate experiment that integrates the Resolution micro
execution model with the batch processing macro execution
model for the star join from SSB Query 3.1. Decoupling this
experiment allows us to apply the rules for coprocessor data
management by Yuan et al. [36] and to measure end-to-end
performance for larger datasets.

The star join recombines three dimension tables and one
fact table with an overall selectivity of 3.4%. We build hash
tables for the dimension tables in GPU global memory. The
fact table resides in pinned host memory and each column is
partitioned into blocks of 0.5 MB, 2 MB or 8 MB. The blocks are
transferred asynchronously via PCIe into an inner kernel that
computes the star join by probing each dimension hash table.

Figure 21 shows the end-to-end execution times for each
block size when executing the experiment. We observe that
execution times grow linearly with increasing scale factors
and that block sizes larger than 2 MB can saturate the PCIe
bandwidth. The computation does not become a bottleneck
for the examined scale factors. With a block size of 4 MB and
scale factor 300, the size of intermediate data in GPU global
memory is only 473 MB. Therefore, we expect the approach to
scale to even larger databases with linear performance.
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8.9 Experiment 6: End-to-End Performance
To make a comparison to other database systems, we ex-
ecute the TPC-H queries with different database systems
and measure end-to-end performance. We compare Mon-
etDB5 Dec2016-SP3 executed on CPUs, and CoGaDB 0.41 and
HorseQC executed on GPUs. Both competitors feature an
operator-at-a-time approach. We perform the measurements
with warm caches. MonetDB runs on a workstation-class
system with an Intel Xeon E5-1607 CPU and 32 GB RAM.
CoGaDB and HorseQC run on the GTX970. The results are
shown in Figure 22.

Observations. For the supported queries, HorseQC is up
to 5.8x faster than CoGaDB. While CoGaDB uses GPU global
memory as a cache for frequently used columns, HorseQC
does not cache data between queries. This shows that HorseQC
uses memory and interconnects more efficiently. For Q6 there
is no improvement, because query execution is PCIe bound.

HorseQC has lower execution times than MonetDB by
factors of up to 26.9x. Despite moving data through the PCIe
bottleneck, the additional bandwidth resources of GPU global
memory offer an acceleration. For Q19 MonetDB has a lower
execution time than HorseQC. This shows that for queries
with a low complexity, it is more effective to process data
directly than moving it over PCIe.

9 DISCUSSION
In the previous experiments, we evaluated our new approaches
to query compilation on coprocessors. Across all experiments,
we were able to show improvements of query compilation over
operator-at-a-time processing. Operator-at-a-time has a low
memory efficiency due to large materialization volumes and
repetitive operations. The approach therefore cannot utilize
the memory systems surrounding the coprocessor efficiently.

While naive compilation techniques increase the memory
efficiency, reductions and prefix sums split operator pipelines
into multiple passes. In this way, the approach inherits the
drawbacks of operator-at-a-time. This becomes visible because
kernel execution times frequently exceed PCIe transfer times.

The paper shows a query compilation technique that merges
the operators of a pipeline into one compound kernel. When
combined with efficient reduction techniques, the compound
kernel achieves substantial advantages over other processing
approaches. With upcoming OpenCAPI and NVLink inter-
connects, these improvements to GPU-local processing are
essential to benefit from increased bandwidth of the new hard-
ware. In the evaluation setting, the PCIe bandwidth can be
saturated for all SSB queries. For the TPC-H benchmark, the
approach improves over operator-at-a-time and naive compi-
lation, but saturates PCIe only 8 out of 11 queries. We conclude
that the compound kernel works particularly well with star
join queries.

10 MORE RELATED WORK
Combining multiple kernels for query processing on GPUs
has been used in related work. Wu et al. [32] analyze query
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Figure 22: End-to-end performance of TPC-H queries.

plans to automatically fuse kernels with matching I/O data.
Li et al. [19] use pre-fabricated kernels that recombine several
operators.

Our approach to pipeline the computation of write positions
produces data this is not strictly ordered but still contains
locality. Such partially ordered data has been examined in the
context of the Diag-Join by Helmer et al. [13].

Query compilation can be applied in higher-level languages
for programmability [17] or in lower-level languages for low
compilation times [23]. Similarly, on GPUs lower-level PTX or
SPIR code may be used or higher-level languages may help to
abstract hardware details.

With the end of frequency scaling, it has become increasingly
important to exploit hardware parallelism. Power et al. [27]
show that especially integrated GPUs can achieve better pro-
cessing efficiency than CPUs.

In related work, two ways to compute single-pass prefix
scans have been proposed. They are similar to local resolu-
tion, global propagation with different approaches to pipeline
global propagation. First, in [34], Yan et al. serialize the com-
putation of local prefix sums with memory barriers. Second,
Merrill et al. [22] propose a dynamic look-back mechanism
that recomputes unavailable partial sums. In contrast, we use
atomic operations to avoid re-computations of long pipelines
and to facilitate out-of-order execution.

11 SUMMARY
In this paper, we show query processing techniques that
help to balance the data movement cost and the compute
throughput on GPU-style coprocessors. We measure the data
transfer volumes in different scalable processing approaches to
assess bandwidth bottlenecks. While naive scalable execution
techniques are limited by PCIe bandwidth, batch processing
is limited by GPU-local throughput. To address the bottleneck,
we propose micro execution models that benefit from on-chip
pipelining. Naive query compilation techniques allow simple
code generation but inherit the memory-intensity of operator-
at-a-time. We introduce compound kernels that merge several
pipeline phases into one efficient kernel.
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A BASELINE EXPERIMENT
We executed Query 3.1 from the star schema benchmark
(SSB) [24] and profiled several metrics with the nvprof 2.0.28
tool. As hardware, we used an NVIDIA GTX970 with 146 GB/s
memory bandwidth (measured using device to device memcpy)
in a host system with 16 GB/s bidirectional PCIe bandwidth.
As execution environment, we used the operator-at-a-time
engine CoGaDB. CoGaDB works on full columns, therefore
we chose a database with scale factor 10. This is a favorable
case for a PCIe-attached system like CoGaDB: all intermediate
results remain small enough to be kept in GPU global memory
(4GB). Here and in all later configurations, we assume that
input data resides in main-memory before query execution;
results have to be moved back to main-memory afterwards.
Between operators, CoGaDB keeps intermediate data in GPU
global memory. We profiled the following metrics for the
kernels and data transfer operations used to execute the query.
dram_read_transactions:Number of 32 byte read transac-

tions between DRAM and L2 cache. The read metric indicates
data volumes moved for kernel input and indirect reads (e.g.
accessing input columns and probing).
dram_write_transactions:Number of 32 byte write trans-

actions between DRAM and L2 cache. Write transactions
include kernel output and indirect writes respectively (e.g.
writing columns and scatter).
PCIe Transfers: Data transfer volumes between host and

coprocessor through the PCIe bus. Transfers are profiled for
each direction individually.

B SSB QUERY 3.1
We used Query 3.1 from the star schema benchmark several
times to analyze the data movement performed by different
processing approaches. We show the SQL code for the query
in Figure 23.



SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA H. Funke et al.

select c_nation, s_nation, d_year, sum(lo_revenue)
as revenue from customer, lineorder, supplier, date

where lo_custkey = c_custkey
and lo_suppkey = s_suppkey
and lo_orderdate = d_datekey
and c_region = 'ASIA' and s_region = 'ASIA'
and d_year >= 1992 and d_year <= 1997

group by c_nation, s_nation, d_year
order by d_year asc, revenue desc

Figure 23: SSB Query 3.1.
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Figure 24: Work-efficient reduction of 8 values.

C LOCAL RESOLUTION MECHANISMS
In this section, we show how different local resolution algo-
rithms can be integrated with the atomic reduction of global
propagation. Flexibly choosing local resolution algorithms
enables us to tune reductions to the hardware and to real-
ize regular as well as irregular data-parallel reductions. By
embedding all local resolution techniques in one kernel with
atomic global propagation all described operations remain
fully pipelined. In the following, we first describe two regular
data-parallel reductions with different thread group granular-
ities for hardware tunability. Then we show how segmented
reductions are embedded as pre-aggregation step for grouping.

Work-Efficient Reduction. Blelloch introduced an algorithm
for work-efficient parallel reductions [3] that was adapted by
Sengupta et al. [29] to GPUs with scratchpad memory. We
illustrate a reduction of 8 values by 4 threads in Figure 24,
which is inspired by the illustrations in [10]. The algorithm
works in a tree-like structure that reduces 8 values to 4 in the
first step, 4 values to 2 in the second and 2 to 1 respectively.
Between each step, a synchronization barrier ensures that
all results are ready. This produces one pre-aggregate per
workgroup, which is passed to global propagation for atomic
reduction. This is shown Figure 15 (a).

SIMD Reduction. The approach of Sengupta et al. [28] ex-
ploits the scheduling granularity of a GPU to reduce synchro-
nization overhead. On GPU hardware, instructions are issued

in groups of 32/64 threads5 in a SIMD fashion. By matching
the reduction size with the instruction width, synchronization
barriers become unnecessary within the reduction. This intro-
duces an additional level of thread groups: E.g. a workgroup
of 128 threads executes 4 reductions of 32 values each. Lo-
cal resolution, global propagation adapts to this, by entering
global propagation for each of the 4 pre-aggregates. This is
illustrated in Figure 15 (b).

Segmented Reduction. Segmented reductions compute re-
ductions of continuous segments within a sequence. They can
be implemented as data-parallel algorithms on scratchpad
memory with work-efficient reductions and SIMD reductions.
This makes it possible to execute grouped pre-reductions in
scratchpad memory. A similar approach PLAT [35] aggre-
gates frequent grouping keys in a table local to each CPU
core. For query compilation on GPUs the explicit control over
scratchpad memory opens up a new design space for pipelined
grouped aggregation algorithms. We implement a simple sort-
merge-like approach that operates within CTAs on scratchpad
memory:

sort_by_keys(keys, values);
reduce_segments(keys, values, head_flags);
if(head_flags[thread_idx])

atomic_hash_reduce(ht, keys, values);

Additional to the reduced sequence, the segmented reduc-
tion outputs head flags. The head flags indicate the positions
with finished pre-aggregates of a segment. Triggered by the
head flags, threads enter global propagation and insert the
pre-aggregates into a global hash table. This may happen in
an irregular pattern as illustrated in Figure 15 (c).

D REDUCTION IMPLEMENTATIONS
We characterize three micro execution models according to the
way they implement parallel reductions. Pipelined and Reso-
lution implement reductions in the generated code; Multi-pass
makes calls to library functions. While Pipelined implements
reductions only with global atomic operations, Resolution
uses an additional local resolution step. E.g. for technique C3,
Resolution first performs a local sort, followed by a segmented
reduce, and then aggregates the resulting pre-aggregates in
a global hash table. We show the respective reduction im-
plementations for each technique in Table 4. The implemen-
tations for global reduction and sorting operations use the
boost::compute 1.61 library.

E KERNEL CODE
In Figure 25, we show the simplified code of a kernel that
processes a simple query (Figure 16). The kernel includes
a prefix sum computation, which allows to integrate both
predicate evaluation and projection into one kernel. The code
performs four steps:

(1) Evaluate predicates to count the number of results.
(2) Resolve local dependencies using CTA_prefix_sum.

5These thread groups are called wavefronts (64 threads) on AMD hardware
and warps (32 threads) on NVIDIA hardware.
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(3) Resolve global dependencies using atomic_add and
share the global offset to each CTA thread to compute a
write position.

(4) Compute projection and write the result.

void pipeline_kernel(__global int glob_sum, ...) {
//1. predicate evaluation
int num_out = 0;
num_out += (lo_quantity[tid] >= 25-x

&& lo_quantity[tid] <= 25+x);
//2. local resolution
int local_offset = cta_prfx(num_out);
//3. global propagation
__shared int glob_offset[num_CTA];
if(lid == CTA_limit) {
glob_offset[CTA_idx] =
atomic_add(&glob_sum, loc_offset);

}
int write_pos = loc_offset + glob_offset[CTA_idx]);
//4. projection
revenue[write_pos] =
lo_extprice[tid]*lo_discount[tid]+lo_tax[tid];

}

Figure 25: Generated pipeline kernel for selection projec-
tion query containing the computation of global write posi-
tions.

F MODIFICATIONS TO TPC-H QUERIES
As our prototype implementation has a limited scope, we
need to change some of the TPC-H queries. In particular, we
currently do not support "like" expressions and anti joins.
Note that there is no inherent limitation of supporting these
features in future versions. We kept seven TPC-H queries (1,
4, 5, 6, 7, 18, 19) unchanged and modified four TPC-H queries
(9, 13, 17, 21). Our modifications only marginally impact the
performance of the queries. The changes are as follows:

Q9: We replaced the "like" expression "p_name like ’%green%’"
with a filter on the primary key p_partkey.
Q13: We removed the "like" expression "o_comment not like
’%special%requests%’".
Q17: We manually unnested the query.
Q21: We replaced the "not exists" expression on the second
subquery with an "exists" expression because we do not
support anti joins at the moment.

select sum(lo_extendedprice), lo_orderkey % x
from lineorder
group by lo_orderkey % x

Figure 26: Query 2 is a grouped aggregation of all lineorder
tuples with x different groups.

G ADDITIONAL EXPERIMENTS
G.1 Single Tuple Aggregation
In this experiment, we evaluate the effect of pipelining single
tuple aggregations. We modify Query 1 (shown in Figure 16)
by adding an aggregation of the projected attribute revenue
to a single sum. We compare Operator-at-a-time, Multi-pass
and the pipelined technique Resolution. Figure 27 shows the
results of Experiment 2 on all coprocessors. The experiment
results confirm the basic observation that Resolution increases
throughput over Multi-pass. The approach allows to saturate
the PCIe bandwidth for all selectivities. Comparing the re-
sults of the GTX970 and the GTX770, we observe that atomic
operations have gained performance on the newer Maxwell
hardware architecture of the GTX970. However, compared to
the results from Experiment 1, there is a clear difference in
the performance of atomic operations. We attribute this to the
reuse of the atomic aggregate value which is necessary for
prefix sums but not required for aggregations.
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Figure 27: Performance of single tuple aggregation Query 2
across all coprocessors.

G.2 Star Schema Benchmark
In Table 3, we show the performance of our micro execu-
tion model Resolution:WE for the star schema benchmark
queries across all coprocessors. We executed the queries on
a database with scale factor 10 for the GTX970, GTX770, and
RX480 and with scale factor 5 on the A10 due to the limited
memory capacity of 2 GB. We add the measured throughput
and memory bandwidth usage for each query. The results
confirm the observation from the previous experiment. On the
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GTX970 GTX770 RX480 A10 APU (SF5)
Query time thr.put memory time thr.put memory time thr.put memory time thr.put memory

ms GB/s GB/s ms GB/s GB/s ms GB/s GB/s ms GB/s GB/s

ssb11 7.20 133.33 116.58 8.14 117.97 103.15 31.79 30.19 26.40 61.94 7.75 7.61
ssb12 5.96 161.00 106.41 6.97 137.66 90.98 26.13 36.73 24.27 50.58 9.49 7.01
ssb13 5.93 161.95 106.67 6.67 143.82 94.73 27.81 34.52 22.74 51.75 9.27 6.85
ssb21 28.10 34.50 71.71 56.48 17.17 35.69 78.65 12.33 25.63 142.75 3.40 7.66
ssb23 19.31 50.06 77.04 37.62 25.68 39.53 60.80 15.89 24.46 112.94 4.28 7.11
ssb31 47.30 20.37 72.69 111.18 8.67 30.93 136.02 7.08 25.28 195.95 2.46 9.26
ssb32 21.20 45.45 38.52 39.89 24.16 20.48 84.29 11.43 9.69 101.53 4.75 4.17
ssb33 15.41 62.53 34.62 31.36 30.73 17.01 37.41 25.76 14.26 88.79 5.43 3.11
ssb34 13.56 71.06 38.31 29.26 32.93 17.75 30.67 31.42 16.94 82.35 5.85 3.32
ssb41 50.92 28.54 59.21 81.03 17.93 37.21 73.51 19.77 41.02 223.49 3.25 7.34
ssb42 33.10 43.97 61.01 59.26 24.55 34.07 97.69 14.90 20.67 151.85 4.79 7.30
ssb43 22.53 64.38 52.53 41.32 35.11 28.64 78.63 18.45 15.05 110.01 6.59 6.01

Table 3: Performance metrics of star schema benchmark queries across all coprocessors (scale factor 10, except for A10).

Operation Local Resolution
scratchpad

(32-1024 elements)

Global Propagation
global memory
(all elements)

Pipeline
Breaker

Materialization
Volume

ID

Aligned [global prefix sum] yes full �⋒ A1
Write none atomic prefix sum no none ⋒ A2

prefix sum atomic prefix sum no none � A3
Single Tuple [global reduce] yes filtered �⋒ B1
Aggregation none atomic reduce no none ⋒ B2

reduce atomic reduce no none � B3
Grouped [glob. sort, glob. reduce segments] yes filtered �⋒ C1

Aggregation none atomic hash reduce no none ⋒ C2
sort, reduce seg. atomic hash reduce no none � C3

�⋒ Multi-pass
Accepting pipeline breakers

⋒ Pipelined
Easiest way to fully pipeline

�Resolution
Best scratchpad usage

Table 4: Reduction techniques, that were introduced in this paper. HorseQC uses local resolution, global propagation to
integrate reductions into fully pipelined kernels.

GTX970, the compute throughput consistently exceeds PCIe
bandwidth, which allows a full utilization. On the other copro-
cessors, however, the throughput for some queries falls behind
PCIe. Deeper investigation revealed that less-selective queries

spend a substantial part of the time for computing the global
propagation step of grouped aggregation. Improving the local
resolution algorithm to use the full scratchpad memory space
may benefit these cases.
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